气候与水文

祁连山地区过去500 a年代际旱涝事件演化及驱动因素分析

展开
  • 1.中国科学院西北生态环境资源研究院沙漠与沙漠化重点实验室,甘肃 兰州 730000
    2.中国科学院大学,北京 100049
任子健(1998-),男,硕士研究生,主要从事树木年轮与气候变化研究. E-mail: renzijian21@mails.ucas.ac.cn

网络出版日期: 2024-06-20

基金资助

国家自然科学基金(41977383);国家自然科学基金(42271175);甘肃省科技计划项目(23JRRA599)

Evolution and driving factors of megadrought and pluvial events in the Qilian Mountains during the past 500 years

Expand
  • 1. Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, Gansu, China
    2. University of Chinese Academy of Sciences, Beijing 100049, China

Online published: 2024-06-20

摘要

祁连山地区是气候变化敏感区和生态环境脆弱区,年代际重大干旱事件对其植被、冻土等生态要素影响显著。根据前人所重建的干湿变化数据集,分析了祁连山地区过去500 a年代际旱涝事件的发生规律、演化趋势及可能的驱动机制。结果表明:(1) 祁连山地区近几十年来气候呈现明显的湿润化趋势,且1951年之后的变湿趋势已超出了历史时期自然变率范围。(2) 亚洲夏季降水数据集对研究区历史干湿状况代表性良好,该地区过去7次年代际干旱事件降水差异显著,其中严重程度最高的是1786—1796年干旱;4次年代际湿润事件持续时间差异显著,持续时间最长的是发生在1968—2009年长达42 a的湿润事件。(3) 年代际旱涝事件受气候外强迫和海温内部变率综合影响,太平洋和大西洋年代际海温模态变化及二者位相组合是调节祁连山年代际旱涝事件的关键因子。太阳辐射与祁连山降水呈同相位变化,火山活动则主要影响年代际干旱事件。研究强调长时间背景对评估当前祁连山地区气候异常的重要性,并建议评估未来该地区发生重大旱涝事件风险时需综合考虑外强迫和海温内部变率的不确定性。

本文引用格式

任子健, 王江林, 徐贺年, 秦春 . 祁连山地区过去500 a年代际旱涝事件演化及驱动因素分析[J]. 干旱区地理, 2024 , 47(2) : 214 -227 . DOI: 10.12118/j.issn.1000-6060.2023.070

Abstract

Qilian Mountains is a climate-sensitive area in the arid areas of northwest China, where extreme megadrought events considerably impact vegetation, frozen soil, and other ecological elements. This paper uses three hydroclimate reconstruction datasets to analyze the occurrence, evolution, and possible driving mechanism of megadrought and pluvial events in the Qilian Mountains over the past 500 years. The results showed that the climate in the Qilian Mountains has shown a clear wetting trend since the recent decades, and the wetness trend after 1951 has exceeded the range of natural variability in the historical period. The RAP dataset provided a good representation of the historical dry and wet conditions in the study area. Significant variations were observed in precipitation during the past seven megadrought events in the region, with the highest severity occurring during the drought period of 1786—1796. Furthermore, considerable variations were noted in the duration of the four megapluvial events, with the longest duration being a wet event that lasted for 42 years from 1968 to 2009. Megadrought and pluvial events were influenced by climate forcing and internal variability of sea surface temperatures (SST). The decadal SST modes in the Pacific and Atlantic Oceans and their phase combinations were key factors regulating the megadrought and pluvial events in the Qilian Mountains. Solar radiation exhibited an in-phase variation with the precipitation in the Qilian Mountains, while volcanic activity primarily affected megadrought events. This study highlights the importance of a long-term perspective for assessing current hydroclimate anomalies in the Qilian Mountains and including possible roles of external forcing and sea surface temperature variability in assessing the future megadrought and pluvial risks in this region.

参考文献

[1] Cook E R, Seager R, Cane M A, et al. North American drought: Reconstructions, causes, and consequences[J]. Earthence Reviews, 2007, 81(1-2): 93-134.
[2] Ionita M, Dima M, Nagavciuc V, et al. Past megadroughts in central Europe were longer, more severe and less warm than modern droughts[J]. Communications Earth & Environment, 2021, 2(1): 61, doi: 10.1038/s43247-021-00130-w.
[3] Bryson R A, Swain A M. Holocene variations of monsoon rainfall in Rajasthan[J]. Quaternary Research, 1981, 16(2): 135-145.
[4] Kennett D J, Breitenbach S F M, Aquino V V, et al. Development and disintegration of Maya political systems in response to climate change[J]. Science, 2012, 338(6108): 788-791.
[5] Lu E, Luo Y, Zhang R, et al. Regional atmospheric anomalies responsible for the 2009—2010 severe drought in China[J]. Journal of Geophysical Research Atmospheres, 2011, 116: D21114, doi: 10.1029/2011JD015706.
[6] Viste E, Korecha D, Sorteberg A. Recent drought and precipitation tendencies in Ethiopia[J]. Theoretical & Applied Climatology, 2013, 112(3): 535-551.
[7] Cook B I, Cook E R, Smerdon J E, et al. North American megadroughts in the Common Era: Reconstructions and simulations[J]. Wiley Interdisciplinary Reviews-Climate Change, 2016, 7(3): 411-432.
[8] Cook E R, Woodhouse C A, Eakin C M, et al. Long-term aridity changes in the western United States[J]. Science, 2004, 306(5698): 1015-1018.
[9] Seager R, Ting M F. Decadal drought variability over North America: Mechanisms and predictability[J]. Current Climate Change Reports, 2017, 3(2): 141-149.
[10] Ma Z G, Fu C B. Some evidence of drying trend over northern China from 1951 to 2004[J]. Chinese Science Bulletin, 2006, 51(23): 2913-2925.
[11] Qin Y M, Ning L, Li L H, et al. Assessing the modern multi-decadal scale aridification over the northern China from a historical perspective[J]. Journal of Geophysical Research-Atmospheres, 2022, 127(3): e2021JD035622, doi: 10.1029/2021JD035622.
[12] Ning L, Bradley R S. Winter climate extremes over the northeastern United States and southeastern Canada and teleconnections with large-scale modes of climate variability[J]. Journal of Climate, 2015, 28(6): 2475-2493.
[13] Ning L, Qian Y F. Interdecadal change in extreme precipitation over south China and its mechanism[J]. Advances in Atmospheric Sciences, 2009, 26(1): 109-118.
[14] Seager R, Graham N, Herweijer C, et al. Blueprints for Medieval hydroclimate[J]. Quaternary Science Reviews, 2007, 26(19-21): 2322-2336.
[15] Zhang L X, Zhou T J. Drought over east Asia: A review[J]. Journal of Climate, 2015, 28(8): 3375-3399.
[16] Qian C, Zhou T J. Multidecadal variability of north China aridity and its relationship to PDO during 1900—2010[J]. Journal of Climate, 2014, 27(3): 1210-1222.
[17] Wang X J, Pang G J, Yang M X, et al. Precipitation changes in the Qilian Mountains associated with the shifts of regional atmospheric water vapour during 1960—2014[J]. International Journal of Climatology, 2018, 38(12): 4355-4368.
[18] 张文杰, 程维明, 李宝林, 等. 气候变化下的祁连山地区近40年多年冻土分布变化模拟[J]. 地理研究, 2014, 33(7): 1275-1284.
  [ Zhang Wenjie, Cheng Weiming, Li Baolin, et al. Simulation of the permafrost distribution on Qilian Mountains over past 40 years under the influence of climate change[J]. Geographical Research, 2014, 33(7): 1275-1284. ]
[19] 刘兰娅, 勾晓华, 张芬, 等. 升温对祁连山东部青海云杉径向生长的影响[J]. 应用生态学报, 2021, 32(10): 3576-3584.
  [ Liu Lanya, Gou Xiaohua, Zhang Fen, et al. Effects of warming on radial growth of Picea crassifolia in the eastern Qilian Mountains, China[J]. Chinese Journal of Applied Ecology, 2021, 32(10): 3576-3584. ]
[20] Luo L H, Ma W, Zhuang Y L, et al. The impacts of climate change and human activities on alpine vegetation and permafrost in the Qinghai-Tibet engineering corridor[J]. Ecological Indicators, 2019, 93: 24-35.
[21] 晋子振, 秦翔, 赵求东, 等. 祁连山西段老虎沟流域消融季径流变化特征研究[J]. 干旱区地理, 2023, 46(2):178-190.
  [ Jin Zizhen, Qin Xiang, Zhao Qiudong, et al. Characteristics of runoff variation during ablation season in Laohugou watershed of western Qilian Mountains[J]. Arid Land Geography, 2023, 46(2): 178-190. ]
[22] 杨金虎, 江志红, 王鹏祥, 等. 中国年极端降水事件的时空分布特征[J]. 气候与环境研究, 2018, 51(1): 75-83.
  [ Yang Jinhu, Jiang Zhihong, Wang Pengxiang, et al. Temporal and spatial characteristic of extreme precipitation event in China[J]. Climatic and Environmental Research, 2018, 51(1): 75-83. ]
[23] 程鹏, 孔祥伟, 罗汉, 等. 近60 a以来祁连山中部气候变化及其径流响应研究[J]. 干旱区地理, 2020, 43(5): 1192-1201.
  [ Cheng Peng, Kong Xiangwei, Luo Han, et al. Climate change and its runoff response in the middle section of the Qilian Mountains in the past 60 years[J]. Arid Land Geography, 2020, 43(5): 1192-1201. ]
[24] Zhang Y, Shao X M, Yin Z Y, et al. Characteristics of extreme droughts inferred from tree-ring data in the Qilian Mountains, 1700—2005[J]. Climate Research, 2011, 50(2-3): 141-159.
[25] Gou X H, Gao L L, Deng Y, et al. An 850-year tree-ring-based reconstruction of drought history in the western Qilian Mountains of northwestern China[J]. International Journal of Climatology, 2015, 35(11): 3308-3319.
[26] Yang B, Qin C, Wang J L, et al. A 3500-year tree-ring record of annual precipitation on the northeastern Tibetan Plateau[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(8): 2903-2908.
[27] Gou X H, Deng Y, Gao L L, et al. Millennium tree-ring reconstruction of drought variability in the eastern Qilian Mountains, northwest China[J]. Climate Dynamics, 2015, 45(7-8): 1761-1770.
[28] Yang B, Kang S Y, Ljungqvist F C, et al. Drought variability at the northern fringe of the Asian summer monsoon region over the past millennia[J]. Climate Dynamics, 2014, 43(3-4): 845-859.
[29] 施雅风, 沈永平, 胡汝骥. 西北气候由暖干向暖湿转型的信号、影响和前景初步探讨[J]. 冰川冻土, 2002, 24(3): 219-226.
  [ Shi Yafeng, Shen Yongping, Hu Ruji. Preliminary study on signal, impact and foreground of climatic shift from warm-dry to warm-humid in northwest China[J]. Journal of Glaciology and Geocryology, 2002, 24(3): 219-226. ]
[30] 丁一汇, 柳艳菊, 徐影, 等. 全球气候变化的区域响应: 中国西北地区气候“暖湿化”趋势、成因及预估研究进展与展望[J]. 地球科学进展, 2023, 38(6): 551-562.
  [ Ding Yihui, Liu Yanju, Xu Ying, et al. Regional responses to global climate change: Progress and prospects for trend, causes, and projection of climatic warming-wetting in northwest China[J]. Advances in Earth Science, 2023, 38(6): 551-562. ]
[31] Shi H, Wang B, Cook E R, et al. Asian summer precipitation over the past 544 years reconstructed by merging tree rings and historical documentary records[J]. Journal of Climate, 2018, 31(19): 7845-7861.
[32] Cook E R, Anchukaitis K J, Buckley B M, et al. Asian monsoon failure and megadrought during the Last Millennium[J]. Science, 2010, 328(5977): 486-489.
[33] Shi F, Zhao S, Guo Z T, et al. Multi-proxy reconstructions of May-September precipitation field in China over the past 500 years[J]. Climate of the Past, 2017, 13(12): 1919-1938.
[34] Liu Y, Zheng J Y, Hao Z X, et al. A dataset of standard precipitation index reconstructed from multi-proxies over Asia for the past 300 years[J]. Earth System Science Data, 2022, 14(12): 5717-5735.
[35] Feng S, Hu Q, Wu Q R, et al. A gridded reconstruction of warm season precipitation for Asia spanning the Past Half Millennium[J]. Journal of Climate, 2013, 26(7): 2192-2204.
[36] Liu Y, Hao Z X, Zhang X Z, et al. Intercomparisons of multiproxy-based gridded precipitation datasets in monsoon Asia: Cross-validation and spatial patterns with different phase combinations of multidecadal oscillations[J]. Climatic Change, 2021, 165(1-2): 31, doi: 10.1007/s10584-021-03072-6.
[37] Lean J L. Estimating solar irradiance since 850 CE[J]. Earth and Space Science, 2018, 5(4): 133-149.
[38] Crowley T J. Causes of climate change over the past 1000 years[J]. Science, 2000, 289(5477): 270-277.
[39] Macdonald G M, Case R A. Variations in the Pacific Decadal Oscillation over the past millennium[J]. Geophysical Research Letters, 2005, 32(8): L08703, doi: 10.1029/2005GL022478.
[40] Wang J L, Yang B, Ljungqvist F C, et al. Internal and external forcing of multidecadal Atlantic climate variability over the past 1200 years[J]. Nature Geoscience, 2017, 10(7): 512-517.
[41] Ault T R, George S S, Smerdon J E, et al. A robust null hypothesis for the potential causes of megadrought in western north America[J]. Journal of Climate, 2018, 31(1): 3-24.
[42] Stevenson S, Overpeck J T, Fasullo J, et al. Climate variability, volcanic forcing, and Last Millennium hydroclimate extremes[J]. Journal of Climate, 2018, 31(11): 4309-4327.
[43] 刘旻霞, 焦骄, 潘竟虎, 等. 青海省植被净初级生产力(NPP)时空格局变化及其驱动因素[J]. 生态学报, 2020, 40(15): 5306-5317.
  [ Liu Minxia, Jiao Jiao, Pan Jinghu, et al. Spatial and temporal patterns of planting NPP and its driving factors in Qinghai Province[J]. Acta Ecologica Sinica, 2020, 40(15): 5306-5317. ]
[44] 徐勇, 戴强玉, 黄雯婷, 等. 2000—2020年西南地区植被NDVI时空变化及驱动机制探究[J]. 环境科学, 2023, 44(1): 323-335.
  [ Xu Yong, Dai Qiangyu, Huang Wenting, et al. Spatio-temporal variation in vegetation cover and its driving mechanism exploration in southwest China from 2000 to 2020[J]. Environment Science, 2023, 44(1): 323-335. ]
[45] 苏玥, 张存厚, 阿木尔萨那, 等. 1981—2018年内蒙古典型草原季节性冻土对气候变化的响应[J]. 干旱区地理, 2022, 45(3): 684-694.
  [ Su Yue, Zhang Cunhou, Amuersana, et al. Response of seasonal frozen soil to climate change on a typical steppe of Inner Mongolia during 1981—2018[J]. Arid Land Geography, 2022, 45(3): 684-694. ]
[46] 王有恒, 李丹华, 卢国阳, 等. 祁连山气候变化特征及其对水资源的影响[J]. 应用生态学报, 2022, 33(10): 2805-2812.
  [ Wang Youheng, Li Danhua, Lu Guoyang, et al. Characteristics of climate change and its impact on water resources in Qilian Mountains, China[J]. Chinese Journal of Applied Ecology, 2022, 33(10): 2805-2812. ]
[47] Tian Q H, Zhou X J, Gou X H, et al. Analysis of reconstructed annual precipitation from tree-rings for the past 500 years in the middle Qilian Mountain[J]. Science China-Earth Sciences, 2012, 55(5): 770-778.
[48] Sun J Y, Liu Y. Drought variations in the middle Qilian Mountains, northeast Tibetan Plateau, over the last 450 years as reconstructed from tree rings[J]. Dendrochronologia, 2013, 31(4): 279-285.
[49] 刘芸芸, 张雪芹. 西北干旱区空中水资源的时空变化特征及其原因分析[J]. 气候变化研究进展, 2011, 7(6): 385-392.
  [ Liu Yunyun, Zhang Xueqin. Variations of atmospheric water resources over the arid region of northwest China and its causes[J]. Advances in Climate Change Research, 2011, 7(6): 385-392. ]
[50] Liu J A, Wang B, Wang H L, et al. Forced response of the East Asian summer rainfall over the past millennium: Results from a coupled model simulation[J]. Climate Dynamics, 2011, 36(1-2): 323-336.
[51] Zhou T J, Li B, Man W M, et al. A comparison of the Medieval Warm Period, Little Ice Age and 20th century warming simulated by the FGOALS climate system model[J]. Chinese Science Bulletin, 2011, 56(28-29): 3028-3041.
[52] Chen F H, Chen J H, Huang W, et al. Westerlies Asia and monsoonal Asia: Spatiotemporal differences in climate change and possible mechanisms on decadal to sub-orbital timescales[J]. Earth-Science Reviews, 2019, 192: 337-354.
[53] Jin L Y, Chen F H, Morrill C, et al. Causes of early Holocene desertification in arid central Asia[J]. Climate Dynamics, 2012, 38(7-8): 1577-1591.
[54] Zhang Y, Tian Q H, Gou X H, et al. Annual precipitation reconstruction since AD 775 based on tree rings from the Qilian Mountains, northwestern China[J]. International Journal of Climatology, 2011, 31(3): 371-381.
[55] Shen C, Wang W C, Hao Z, et al. Exceptional drought events over eastern China during the last five centuries[J]. Climatic Change, 2007, 85(3-4): 453-471.
[56] Man W M, Zhou T J, Jungclaus J H. Effects of large volcanic eruptions on global summer climate and East Asian Monsoon changes during the Last Millennium: Analysis of MPI-ESM simulations[J]. Journal of Climate, 2014, 27(19): 7394-7409.
[57] Iles C E, Hegerl G C, Schurer A P, et al. The effect of volcanic eruptions on global precipitation[J]. Journal of Geophysical Research-Atmospheres, 2013, 118(16): 8770-8786.
[58] Zhuo Z H, Gao C C, Pan Y Q. Proxy evidence for China’s monsoon precipitation response to volcanic aerosols over the past seven centuries[J]. Journal of Geophysical Research-Atmospheres, 2014, 119(11): 6638-6652.
[59] Hernandez A, Martin-Puertas C, Moffa-Sanchez P, et al. Modes of climate variability: Synthesis and review of proxy-based reconstructions through the Holocene[J]. Earth-Science Reviews, 2020, 209: 103286, doi: 10.1016/j.earscirev.2020.103286.
[60] Fang K Y, Chen D L, Ilvonen L, et al. Oceanic and atmospheric modes in the Pacific and Atlantic Oceans since the Little Ice Age (LIA): Towards a synthesis[J]. Quaternary Science Reviews, 2019, 215: 293-307.
[61] Si D, Ding Y H. Oceanic forcings of the interdecadal variability in East Asian summer rainfall[J]. Journal of Climate, 2016, 29(21): 7633-7649.
[62] Mccarthy G D, Haigh I D, Hirschi J J M, et al. Ocean impact on decadal Atlantic climate variability revealed by sea-level observations[J]. Nature, 2015, 521(7553): 508-510.
[63] Liu Y W, Chiang J C H, Chou C, et al. Atmospheric teleconnection mechanisms of extratropical North Atlantic SST influence on Sahel rainfall[J]. Climate Dynamics, 2014, 43(9-10): 2797-2811.
[64] 丁一汇, 李怡, 王遵娅, 等. 亚非夏季风的年代际变化: 大西洋多年代际振荡与太平洋年代际振荡的协同作用[J]. 大气科学学报, 2020, 43(1): 20-32.
  [ Ding Yihui, Li Yi, Wang Zunya, et al. Interdecadal variation of Afro-Asian summer monsoon: Coordinated effects of AMO and PDO oceanic modes[J]. Transactions of Atmospheric Sciences, 2020, 43(1): 20-32. ]
[65] 朱益民, 杨修群. 太平洋年代际振荡与中国气候变率的联系[J]. 气象学报, 2003, 61(6): 641-654.
  [ Zhu Yimin, Yang Xiuqun. Relationships between Pacific Decadal Oscillation (PDO) and climate variabilities in China[J]. Acta Meteorologica Sinica, 2003, 61(6): 641-654. ]
[66] 程乘, 朱益民, 丁黄兴, 等. 中国东部地区夏季降水和环流的年代际转型及其与PDO的联系[J]. 气象科学, 2017, 37(4): 450-457.
  [ Chen Cheng, Zhu Yimin, Ding Huangxing, et al. The interdecadal shift of summer precipitation and atmospheric circulation over east China and its relationship with PDO[J]. Journal of the Meteorological Sciences, 2017, 37(4): 450-457. ]
[67] 贾艳青, 张勃. 近57年中国北方气候干湿变化及与太平洋年代际振荡的关系[J]. 土壤学报, 2019, 56(5): 1085-1097.
  [ Jia Yanqing, Zhang Bo. Relationship of dry-wet climate changes in northern China in the past 57 years with Pacific Decadal Oscillation (PDO)[J]. Acta Pedologica Sinica, 2019, 56(5): 1085-1097. ]
[68] Wang S S, Huang J P, Huang G, et al. Enhanced impacts of Indian Ocean Sea surface temperature on the dry/wet variations over northwest China[J]. Journal of Geophysical Research: Atmospheres, 2022, 127(11): e2022JD036533, doi: 10.1029/2022JD036533.
[69] Peng D D, Zhou T J. Why was the arid and semiarid northwest China getting wetter in the recent decades?[J]. Journal of Geophysical Research-Atmospheres, 2017, 122(17): 9060-9075.
[70] Treydte K S, Schleser G H, Helle G, et al. The twentieth century was the wettest period in northern Pakistan over the past millennium[J]. Nature, 2006, 440(7088): 1179-1182.
Options
文章导航

/