运用隐含碳排放模型,结合Kaya恒等式和LMDI分解法,从时间和空间角度测算和分析2003—2020年中国内地除西藏以外的30个省份在能源消费过程中产生的隐含碳排放,研究隐含碳排放驱动因素的动态特征和总体状况。结果表明:(1)隐含碳排放变化趋势包括先升后降和波动上升两种类型,总体呈增长态势,增长速度存在显著的省际差异。(2)隐含碳排放空间差异明显,包括高值区、中高值区、中低值区和低值区4个等级。(3)驱动因素动态特征包括先升后降、波动上升、波动下降和先降后升4种类型,且经济产出效应和能源强度效应分别呈正向和负向驱动,能源结构效应和人口规模效应作用方向和大小均存在差异。通过优化经济增长方式、发展低碳清洁技术、推广清洁能源应用等措施,可以有效抑制隐含碳排放,促进经济低碳化发展。
This paper calculated and analysed the implicit carbon emissions produced in the energy consumption processes of 30 provinces except for Tibet in Chinese mainland from 2003 to 2020, from a temporal and spatial viewpoint using the implicit carbon emission model. Additionally, the dynamic properties and overall situation of the driving forces of implicit carbon emissions were investigated in combination with Kaya’s identity and the LMDI decomposition approach. The results showed that: (1) The implicit carbon emissions trend included two different sorts of changes: first increasing and then reducing, and fluctuating upward, exhibiting an overall increase tendency with notable inter-provincial variances in growth rate. (2) Significant geographic variations in implicit carbon emissions were found at four levels: high value zone, medium high value zone, medium low value zone, and low value zone. (3) Driving factors had four different dynamic characteristics: first increasing and then falling, fluctuation rising, fluctuation falling, and first falling and then rising. The effects of economic output and energy intensity were driven positively and adversely, respectively. The energy structure and the population size had different effects in terms of magnitude and direction. Measures can successfully suppress implicit carbon emissions and encourage low-carbon economic development by developing low-carbon and clean technology, fostering the use of clean energy, and optimising economic growth patterns.
[1]王丽萍,刘明浩.基于投入产出法的中国物流业碳排放测算及影响因素研究[J].资源科学,2018,40(1):195-206.
[2]马晓君,董碧滢,于渊博,等.东北三省能源消费碳排放测度及影响因素[J].中国环境科学,2018,38(8):3170-3179.
[3]刘玉珂,金声甜.中部六省能源消费碳排放时空演变特征及影响因素[J].经济地理,2019,39(1):182-191.
[4]吴长兰,王东,苏彦涛.广东省市域碳排放时空分异特征及影响因素:基于EDGAR数据的分析[J].地域研究与开发,2020,39(1):127-132.
[5]孙燕燕.上海市旅游碳排放估算及其效应分解[J].地域研究与开发,2020,39(1):122-126.
[6]王强,伍世代,林羽珊.中国东南沿海地区工业能源消费碳排放的驱动因素分析[J].资源科学,2015,37(6):1239-1248.
[7]陶玉国,黄震方,吴丽敏,等.江苏省区域旅游业碳排放测度及其因素分解[J].地理学报,2014,69(10):1438-1448.
[8]吕倩,刘海滨.基于夜间灯光数据的黄河流域能源消费碳排放时空演变多尺度分析[J].经济地理,2020,40(12):12-21.
[9]苏泳娴,陈修治,叶玉瑶,等.基于夜间灯光数据的中国能源消费碳排放特征及机理[J].地理学报,2013,68(11):1513-1526.
[10]李晨,李昊玉,孔海峥,等.中国渔业生产系统隐含碳排放结构特征及驱动因素分解[J].资源科学,2021,43(6):1166-1177.
[11]戴小文,漆雁斌,唐宏.1990—2010年中国农业隐含碳排放及其驱动因素研究[J].资源科学,2015,37(8):1668-1676.
[12]SHUI B,HARRISS R C.The Role of CO2 Embodiment in US-China Trade[J].Energy Policy,2006,34(18):4063-4068.
[13]李晖,刘卫东,唐志鹏.全球贸易隐含碳净转移的空间关联网络特征[J].资源科学,2021,43(4):682-692.
[14]米红,张田田,任正委,等.城镇化进程中家庭CO2排放的驱动因素分析[J].中国环境科学,2016,36(10):3183-3192.
[15]杨玉文,吴爱玲,朱洋洋.碳排放驱动因素分解及动态模拟:以内蒙古自治区为例[J].统计与决策,2020,36(12):76-80.
[16]方齐云,陶守来.基于人口与城镇化视角的中国碳排放驱动因素探究[J].当代财经,2017(3):14-25.
[17]史俊晖,戴小文.我国省域农业隐含碳排放及其驱动因素时空动态分析[J].中国农业资源与区划,2020,41(8):169-180.
[18]黄鑫,邢秀为,程文仕.土地利用碳排放与GDP含金量的脱钩关系及驱动因素[J].地域研究与开发,2020,39(3):156-161.
[19]陈星星.集聚还是分散:中国行业能源消费存在空间异质性吗[J].山西财经大学学报,2018,40(9):48-61.
[20]秦军,唐慕尧.基于Kaya恒等式的江苏省碳排放影响因素研究[J].生态经济,2014,30(11):53-56.
[21]范丹.中国能源消费碳排放变化的驱动因素研究:基于LMDI-PDA分解法[J].中国环境科学,2013,33(9):1705-1713.
[22]王长建,汪菲,张虹鸥.新疆能源消费碳排放过程及其影响因素:基于扩展的Kaya恒等式[J].生态学报,2016,36(8):2151-2163.
[23]李兰兰,徐婷婷,李方一,等.中国居民天然气消费重心迁移路径及增长动因分解[J].自然资源学报,2017,32(4):606-619.
[24]章恒全,陈卓然,张陈俊.长江经济带工业水环境压力与经济增长脱钩努力研究[J].地域研究与开发,2019,38(2):13-18.