利用2012年、2015年、2018年和2020年的夜间灯光数据与统计数据,在4期建成区提取结果相对误差均小于5%的基础上,采用局部空间自相关、标准差椭圆、地理探测器等方法进行建成区时空格局与影响因素分析。结果表明:建成区扩张速度分布由2012—2015年的从中央到四周递减转变为2015—2020年的四周增速较高而中央较低,2012—2020年扩张强度有所提升,中强度及以上州市占比由2012—2015年的31.25%增加到2018—2020年的50%;建成区扩张速度的高高聚集区与热点区域均分布在滇中与滇东北,且建成区3个时间段内重心呈西北—东北—东南迁移趋势;扩张速度演变的主导单因子为路网密度、用水总量和人口密度,且因子间的交互作用均大于单因子作用。因此,需采取多管齐下、因地制宜的合理调控与正向激励政策来促进平衡发展。
In order to promote the coordinated and sustainable development of Yunnan Province, nighttime light datas and statistical datas from 2012 to 2020 were used. On the basis of the relative errors of the extraction results in the four phases built-up areas are all less than 5%, local spatial autocorrelation, standard deviation ellipse and geographic detector were used to analyze the spatialtemporal pattern and influencing factors of built-up areas. The results show that: The expansion rate of built-up areas decreases from the middle to periphery during 2012—2015 to a high growth rate on the edge and a low growth rate in the middle during 2015—2020, while the expansion intensity of prefecture-level cities with medium growth rate or above increases from 31.25% during 2012—2015 to 50% during 2015—2020; the high agglomerations and hot spots of the built-up area are distributed in central and northeast Yunnan, and the barycenter of the built-up area migrates from northwest to northeast to southeast in four years; the dominant single factors for the evolution of expansion speed are density of road network, total water supply and population density, and the interaction among the factors is greater than the single factor. Hence it is essential to adopt multipronged, reasonable regulation and positive incentive policies according to local conditions to promote balanced development.
[1]LEVIN N,KYBA C C M,ZHANG Q L,et al.Remote Sensing of Night Lights:A Review and an Outlook for the Future[J/OL].Remote Sensing of Envirenment,2020,237:111443 [2021-10-15]. https://doi.org/10.1016/j.rse.2019.111443.
[2]余柏蒗,王丛笑,宫文康,等.夜间灯光遥感与城市问题研究:数据、方法、应用和展望[J].遥感学报,2021,25(1):342-364.
[3]SMALL C,SOUSA D,YETMAN G,et al.Decades of Urban Growth and Development on the Asian Megadeltas[J].Global and Planetary Change,2018,165(6):62-89.
[4]ZHOU Y Y,LI X C,ASRAR G R,et al.A Global Record of Annual Urban Dynamics (1992—2013) from Nighttime Lights[J]. Remote Sensing of Envirenment,2018,219:206-220.
[5]张芝艳,王明果,段平,等.基于夜间灯光影像的云南省建成区演变研究[J].测绘与空间地理信息,2021,44(7):98-101.
[6]许正森,徐永明.整合DMSP/OLS和NPP/VIIRS夜间灯光遥感数据的长江三角洲城市格局时空演化研究[J].地球信息科学学报,2021,23(5):837-849.
[7]李茜铭,郑伯红,熊羽军.基于夜间灯光遥感数据的环洞庭湖生态经济区城市群时空扩展[J].经济地理,2021,41(2):92-102.
[8]严亚磊,于涛,陈浩.国家级城市群发展阶段、空间扩张特征及动力机制[J].地域研究与开发,2021,40(5):51-57.
[9]艾丽娅,马勇,陈甫,等.2012—2017年呼包鄂城市群夜间灯光动态变化特征及其驱动因素分析[J].遥感信息,2021,36(1):77-86.
[10]严淑琴,詹庆明,范域立.基于夜间灯光数据的武汉都市圈建成区空间扩展及其驱动因素研究[J].测绘地理信息,2021,46(5):71-77.
[11]王彦开,赵渺希,荣丽华.基于夜间灯光数据的呼包鄂城市群空间扩张特征及驱动力研究[J].地域研究与开发,2021,40(3):43-49.
[12]徐杰佳,臧淑英.哈尔滨城市扩展特征及驱动力分析[J].测绘通报,2019,57(9):68-72.
[13]曾冰.基于NPP/VIIRS夜间灯光数据的湘鄂赣省际交界区县域经济空间格局及影响因素[J].地理科学,2020,40(6):900-907.
[14]张大成.基于夜光遥感的杭州湾城市群发展轨迹研究[D].杭州:浙江大学,2019.
[15]黄先梅,赵建吉,孟庆岩,等.基于夜间灯光数据的快速城镇化地区城市扩展与重心演变分析:以河南省为例[J].世界地理研究,2019,28(1):79-89.
[16]林之强,彭双云,洪亮,等.基于夜光数据的滇中城市建成区动态监测与时空格局演变[J].水土保持研究,2021,28(1):265-271.
[17]黄琼仪,李亮,李胜,等.基于多源夜间灯光数据的成渝地区近15年城市扩展监测[J].测绘与空间地理信息,2021,44(12):25-30.
[18]黄康,戴文远,黄万里,等.城市快速扩张下的土地储备潜力评价与布局研究:以福建宁德主城区为例[J].地域研究与开发,2020,39(2):137-142.
[19]李全林,马晓冬,沈一.苏北地区乡村聚落的空间格局[J].地理研究,2012,31(1):144-154.
[20]刘涛,侯兰功.2000—2018年成都市中心城区“三生”空间格局演化[J].西南科技大学学报,2020,35(4):71-76.
[21]胡雪瑶,张子龙,陈兴鹏,等.县域经济发展时空差异和影响因素的地理探测:以甘肃省为例[J].地理研究,2019,38(4):772-783.
[22]王莉红,张军民.基于地理探测器的绿洲城镇空间扩张驱动力分析:以新疆石河子市为例[J].地域研究与开发,2019,38(4):68-74.
[23]王劲峰,徐成东.地理探测器:原理与展望[J].地理学报,2017,72(1):116-134.