准确获取大气中云粒子的原位探测信息,对于揭示气溶胶—云—降水形成物理机制、改进数值预报模式微物理参数化方案、评估人工影响天气催化效果等具有重要的应用价值。数字全息测量技术能够同时获取云粒子的尺度、速度、相态和空间位置等信息,且具有覆盖粒子尺度范围广(μm~mm)、空间采样精度高(可达mm量级)和仪器采样体积可准确确定等诸多优点,在云微物理观测领域具有广阔的应用前景。总结了目前国内外数字全息云粒子测量仪器的研究现状,分析了仪器研制所涉及的全息光路设计、机械防护和全息图处理等几个关键技术问题,并介绍了全息云粒子观测结果在揭示混合云内冰晶冻结机制和云中湍流混合作用影响微物理机制等方面的应用。最后,从技术应用角度对全息光路优化设计、全息图处理方法、仪器结构防护和外场观测试验等方面作了一定的思考和展望,以期为开展相关仪器研制和云微物理观测应用研究提供参考。
河流悬浮泥沙动态监测对河道变迁、水利工程安全运行、生态和环境保护等都具有重要的应用价值,利用遥感技术可对大区域河流水体悬浮泥沙进行实时监测。与海洋和湖泊等大面积水体相比,当前对河流悬浮泥沙遥感关注较少,且已有研究主要关注入海河流河口区域。为充分发挥不同时间、空间和光谱分辨率多源卫星遥感资料优势,实现更广泛区域、不同级别河流的悬浮泥沙输运遥感监测,对国内外已发表的关于河流悬浮泥沙卫星遥感的数据源和模型进行了系统归纳,总结出河流悬浮泥沙卫星遥感研究中面临河流遥感反射率高精度提取、悬浮泥沙浓度高精度遥感和基于二维表层悬浮泥沙浓度遥感的三维通量遥感等挑战和难点;在此基础上,从去除邻近效应大气校正、考虑悬浮泥沙粒径分布的浓度遥感和悬浮泥沙输运通量三维遥感3个方面对河流悬浮泥沙遥感监测的未来发展进行了展望。
羟胺(NH2OH)是海洋中极为活跃的痕量氮素之一,是氨氧化、硝酸盐异化还原成铵和厌氧氨氧化等诸多氮循环过程的关键中间产物,是构架海洋氮循环网络的重要组成。同时,NH2OH也是温室气体氧化亚氮(N2O)的重要前体物,与海洋N2O的产生与释放紧密关联。因此,系统理解NH2OH在海洋中的源汇格局、时空变异及其调控机理,对刻画海洋氮循环以及气候效应至关重要。然而,由于NH2OH在海洋中纳摩尔级别浓度及其复杂、活跃的迁移转化过程,使得海洋学界对于NH2OH的认识仍不清晰。系统综述了当前关于海洋NH2OH的研究进展,重点总结了NH2OH潜在的源汇过程、测定方法及其对海洋N2O产生的可能贡献,以及海洋中NH2OH的分布特征及其潜在影响因素。最后,梳理了关于NH2OH测定和影响其分布的可能机理等方面存在的问题和难点,提出未来海洋NH2OH研究的建议与展望。
造礁珊瑚这一生物碳酸岩作为珊瑚礁生态系统的主体,具有对环境变化十分敏感、文石骨骼年际生长纹层清晰、年生长率高、易于精准定年、能够可靠记录其生长环境变化等特点,是研究环境变化的重要载体之一。由于人类对沿海的过度开发,近几十年来,全球范围内的珊瑚在不断退化。氮作为营养元素之一,能够用作了解珊瑚生命生长活动的指标,氮同位素(δ15N)能很好地反映氮源变化和氮的生物地球化学循环,如记录近岸氮排放和氮循环等。国内外已经发表了较多关于珊瑚骨骼δ15N的研究,但尚缺少综述性文章。从氮源示踪、氮循环和骨骼δ15N测试手段综述造礁珊瑚骨骼δ15N的研究现状,认为目前多数研究集中在珊瑚记录氮源变化历史方面,且主要关注人为因素对珊瑚生态系统的影响。未来应该发挥珊瑚骨骼δ15N示踪的能力,开展更多不同海域和不同时间尺度的珊瑚骨骼δ15N研究,探索建立新的测试技术,结合其他地球化学指标以区分生理信号和环境信号的重叠。这对利用珊瑚骨骼δ15N重建古海洋环境和研究现今的环境污染问题都有着重要意义。
人类活动对城市区域的空气含氧量产生了显著的影响,这种改变已经对区域范围内的大气氧平衡构成了威胁。但是城市大气O2的相关研究仍然薄弱,无法对城市O2变化机制做出系统评估。因此,在城市区域进行大气O2的长期观测具有重要意义。详细介绍了兰州市在线大气氧观测平台的基本情况,该平台是国内首个大气O2原位高精度连续观测平台。平台采用气相色谱仪—热导检测器(GC-TCD)来测量大气中O2含量,并构建了一种基于XGBoost模型的数据订正方法。通过使用这种方法,成功地减小了大气O2观测数据的系统误差,使得订正后的测量结果的误差明显减小至-0.68 μmol/mol。观测结果表明,大气中O2呈现明显的季节性和日变化特征,且大气O2与城市人类活动指标(NO x )之间存在良好的对应关系。该平台能够在高背景下检测到大气O2的微变化,为城市大气O2相关研究提供关键的数据支持。由于碳氧循环紧密相关,大气O2的长期观测可为有效制定因地制宜的“双碳”现实路径提供科学依据。
中国西部新生代陆内前陆盆地的迁移过程反映了与其耦合的造山带的缩短隆升历史。通过综述恢复前陆盆地迁移过程的研究方法及其与地壳缩短过程的定量关系,阐明了前陆盆地迁移过程的构造指示意义。横跨前陆盆地的地震反射剖面可显示盆地内的地层上超或砾岩—砂岩过渡带迁移,反映盆地迁移过程;结合磁性地层学约束的地层年龄,可获得迁移速率;该速率的变化对应前陆盆地基底相对造山带的俯冲速率变化,反映造山带吸收的地壳水平缩短速率变化。通过对比分析西昆仑山北侧及天山南、北侧的陆内再生前陆盆地的迁移过程,发现约30 Ma以来西昆仑山和天山的地壳缩短速率变化趋势和变形模式均不相同,可能反映二者造山的动力学机制差异。该方法未来还有望应用于青藏高原东北缘以恢复高原生长过程。
印度板块与欧亚板块碰撞初始时间或者青藏高原的隆升时间是一个重要且一直存在较大争议的科学问题。到目前为止,主要通过地质学或地理学方法手段对该问题进行研究,基于此,试图通过现代大地测量学手段对该问题开展探索性研究。主要利用全球导航卫星系统观测位移场、地表质量迁移负荷改正以及CRUST1.0地壳模型等数据和资料,估算了青藏高原块体的隆升速率和地壳厚度增厚率,进而获得整个青藏高原块体的隆升起始点与隆升过程。在假设青藏高原块体是弹性块体和线性隆升的情况下,推算出印度板块与欧亚板块碰撞初始时间大约为83 Ma。通过探索性研究,为青藏高原块体隆升起始时间点问题提供了值得尝试的新的大地测量途径。
实现“双碳”战略目标的科学基础主要在于深入且系统地理解地球环境系统和人类经济系统之间的相互作用关系。作为以人地系统为主要研究对象的地理学,在“双碳”研究及成果服务中发挥了重要作用。基于“学科分支—数据方法—研究对象—成果贡献”的思路,对2000年以来中国主流地理学期刊及学者发表的“双碳”文献进行回顾和总结后发现: