HE Guojin, LIU Huichan, YANG Ruiqing, ZHANG Zhaoming, XUE Yuan, AN Shihao, YUAN Mingruo, WANG Guizhou, LONG Tengfei, PENG Yan, YIN Ranyu
[Significance] Data resources have become pivotal in modern production, evolving in close synergy with advancements in artificial intelligence (AI) technologies, which continuously cultivate new, high-quality productive forces. Remote sensing data intelligence has naturally emerged as a result of the rapid expansion of remote sensing big data and AI. This integration significantly enhances the efficiency and accuracy of remote sensing data processing while bolstering the ability to address emergencies and adapt to complex environmental changes. Remote sensing data intelligence represents a transformative approach, leveraging state-of-the-art technological advancements and redefining traditional paradigms of remote sensing information engineering and its applications. [Analysis] This paper delves into the technological background and foundations that have facilitated the emergence of remote sensing data intelligence. The rapid development of technology has provided robust support for remote sensing data intelligence, primarily in three areas: the advent of the big data era in remote sensing, significant advancements in remote sensing data processing capabilities, and the flourishing research on remote sensing large models. Furthermore, a comprehensive technical framework is proposed, outlining the critical elements and methodologies required for implementing remote sensing data intelligence effectively. To demonstrate the practical applications of remote sensing data intelligence, the paper presents a case study on applying these techniques to extract ultra-high-resolution centralized and distributed photovoltaic information in China. [Results] By integrating large models with remote sensing data, the study demonstrates how remote sensing data intelligence enables precise identification and mapping of centralized and distributed photovoltaic installations, offering valuable insights for energy management and planning. The effectiveness of remote sensing data intelligence in addressing challenges associated with large-scale photovoltaic extraction underscores its potential for application in critical fields. [Prospect] Finally, the paper provides an outlook on areas requiring further study in remote sensing data intelligence. It emphasizes that high-quality data serves as the foundation for remote sensing data intelligence and highlights the importance of constructing AI-ready knowledge bases and recognizing the value of small datasets. Developing targeted and efficient algorithms is essential for achieving remote sensing intelligence, making the advancement of practical data intelligence methods an urgent research priority. Furthermore, promoting multi-level services for remote sensing data, information, and knowledge through data intelligence should be prioritized. This research provides a comprehensive technical framework and forward-looking insights for remote sensing data intelligence, offering valuable references for further exploration and implementation in critical fields.