云检测专栏

基于机器学习的遥感影像云检测研究进展

展开
  • 1.北华航天工业学院 遥感信息工程学院,河北 廊坊 065000
    2.河北省航天遥感信息处理与应用协同创新中心,河北 廊坊 065000
    3.国家卫星气象中心 卫星气象研究所,北京 100081
    4.中国科学院空天信息创新研究院 遥感卫星应用国家工程实验室,北京 100094
    5.中科空间信息(廊坊)研究院,河北 廊坊 065001
邴芳飞(1995-),女,河北邢台人,硕士研究生,主要从事大气环境遥感研究。E?mail: 1610332423@qq.com

网络出版日期: 2024-06-24

基金资助

国家重点研发计划项目(2019YFE0127300);高分辨率对地观测系统重大专项(30-Y30F06-9003-20/22);国家自然科学基金(41801255);河北省自然科学基金(D2020409003);河北省高等学校科学技术研究项目(ZD2021303);北华航天工业学院博士科研启动基金(BKY-2021-31);民用航天预研项目(D040102);国防基础科研项目(JCKY2020908B001);国防基础科研计划(JCKY2019407D004);北华航天工业学院硕士研究生创新资助项目(YKY-2021-28)

Research Progress of Remote Sensing Image Cloud Detection based on Machine Learning

Expand
  • 1.School of Remote Sensing and Information Engineering,North China Institute of Aerospace Engineering,Langfang 065000,China
    2.Heibei Spacer Remote Sensing Information Processing and Application of Collaborative Innovation Center,Langfang 065000,China
    3.Institute of satellite meteorology,National Satellite Meteorological Center,Beijing 100081,China
    4.National Engineering Laboratory for Satellite Remote Sensing Applications,Aerospace Information Research Institute,Chinese Academy of Sciences,Beijing 100094,China
    5.Zhongke Langfang Institute of Spatial Information Applications,Langfang 065001,China

Online published: 2024-06-24

摘要

在对地观测领域中云检测是遥感定量化应用的重要环节,同时也是卫星气象应用的关键步骤。近年来,基于机器学习的遥感影像云检测逐渐成为该领域的研究热点,并且取得了一系列研究成果。系统阐述了近10 a来国内外基于机器学习的遥感影像云检测的研究进展,将算法模型分为传统的机器学习模型和深度学习模型两类,并对两类中的具体模型进行详细介绍,对比分析不同模型的优缺点及其适用情况。重点介绍了传统机器学习中的支持向量机(SVM)、随机森林等方法,深度学习中的神经网络模型,包括卷积神经网络(CNN)、改进的U-Net网络等模型。在此基础上,分析了基于机器学习的遥感影像云检测研究中存在的问题,讨论了未来潜在发展方向。

本文引用格式

邴芳飞,金永涛,张文豪,徐娜,余涛,张丽丽,裴莹莹 . 基于机器学习的遥感影像云检测研究进展[J]. 遥感技术与应用, 2023 , 38(1) : 129 -142 . DOI: 10.11873/j.issn.1004-0323.2023.1.0129

Abstract

In the field of earth observation, cloud detection is not only an important part in the quantitative application of remote sensing, but also a key step in the application of satellite meteorology. In recent years, remote sensing image cloud detection based on machine learning has gradually become a research hotspot in this field, and a series of research achievements have been obtained. Systematically describes the research progress of remote sensing image cloud detection based on machine learning at home and abroad in recent 10 years, dividing the algorithm models into traditional machine learning model and deep learning model. Moreover, the specific models of two categories are introduced in detail, and the advantages, disadvantages and applications of different models are compared and analyzed. This paper focuses on the Support Vector Machine (SVM), random forest and other methods in traditional machine learning, and the neural network models in deep learning, including Convolutional Neural Network (CNN), improved U-Net network and so on. On this basis, the existing problems in the research of remote sensing image cloud detection based on machine learning are analyzed, and the potential development direction in the future is discussed.

Options
文章导航

/