过刊目录

  • 2020年, 17卷, 第02期
    刊出日期:2024-06-19
      

  • 全选
    |
  • KROH Pawe?
    2020, 17(02): 261-270.
    Helicopters are often used in mountain rescue both for rescuers moving in the area of accidents and for evacuating victims, but in steep or forested terrain finding a landing place can be problematic. The main aim of this research is to use Digital Elevation Model(DEM) and cartographic database analysis to select locations that can be used as landing site for the rescue helicopters. Methods were based on GIS analysis; both raster and vector data were used for identifying touchdown points for rescue helicopters. Based on DEM data, locations with a low slope gradient were identified; topographic vector data were used for identifying unforested sites. Then buffer zones for buildings and power lines were excluded, and it was checked whether the areas had any topographic features that prevented helicopter landings. The findings were verified on an orthophotomap. In result, GIS analyses have selected 1232 polygons that fulfilled initial criteria. Their verification on orthophotomap has shown that only 55% of them could be potentially used as landing site. Landing sites can be found mainly on side ridges of mountain ranges and in valley beds, when those on ridges are most important in this research. The greatest difficulties and methodological challenges are posed by: identification of sites having a shape which prevents landing, the obsolescence of data due to environment dynamics, the presence of features that are not shown on maps but prevent helicopter landings. A map of landing sites is a very useful tool to conduct rescue operations, but each use of a given landing site requires both in-field and numerical verification. The analysis demonstrated that GIS toolsare useful in pre-planning of rescue missions, and also showed that such data must be kept up-to-date and in-field verification is needed continuously, the more so as it plays an important role in ensuring the safety of rescuers and victims.
  • TELBISZ Tamás, BRANKOV Jovana, ?ALI? Jelena
    2020, 17(02): 271-288.
    Mountain depopulation is a worldwide phenomenon observed in all continents. It has varied socio-economic reasons; among others, the low profitability of traditional agriculture, the better job possibilities and the higher level of services in urban settlements. However, it is often recognized that depopulation is related to natural factors such as elevation, slope or lithology. It is also observed that protected areas are frequently established in depopulated mountain regions. Their primary aim is the conservation of nature, but they may help tourism development as well. Tourism, in turn, may slow down or even reverse the process of depopulation. In this study, we investigate the impact of topographic and lithologic factors, namely of karst settings, on mountain demographic processes and the relationship of protected areas and tourism through the example of the northern part of Zlatibor District(Western Serbia). The study area is characterized by mountains and hills at elevations from 200 to 1600 m a.s.l. Our aim is to find GIS-based statistical relationships between topographic, lithologic factors and demographic characteristics. In this area, mountain depopulation started after WWII, and weproved that this process was strongly controlled by topographic factors. The higher and more dissected the area, the more significant is the decrease of the population and the more advanced is the ageing. As a result, population density contrasts are much more pronounced now than 70 years ago. After WWII, depopulation and ageing became gradually more serious on karstic terrains than on non-karst. However, by using compound topographic and lithologic types, we proved that it is not the effect of karst, but the effect of topography. The flow of population from hills and mountains to valleys and basins are closely related to the restructuring of the economic sectors. At present, for the study area, the development of tourism is unequivocally naturebased and connected to protected areas, namely to Tara National Park, Zlatibor Nature Park and ?argan–Mokra Gora Nature Park. In this paper, we also demonstrate how lithology influences tourism possibilities. The leading role of Zlatibor in tourism development is largely thanks to its favourable position on a main transit route.
  • CHENG Lin-lin, LIU Mei, ZHAN Jia-qi
    2020, 17(02): 289-303.
    Mountainous area makes up 22% of global land, and rational land use in this area is important for sustainable development. Mentougou district has been positioned as an ecological conservation development zone of Beijing and significant land use changes have taken place since 2004. With the combination of GIS and Dinamica EGO(Environment for Geoprocessing Objects) model, the quantitative structure and spatial distribution of land use in Mentougou from 2006 to 2014 are analyzed in this paper. Considering topography has influence on the action mode of driving factors, the research area is divided into two parts based on elevation, mountainous area above 300 m, plain and shallow mountainous area below 300 m. Based on cellular automata theory, the probability of land use change is calculated by Weights of Evidence method and the spatial distribution of land use is simulated by means of two complementary spatial transition functions: Expander and Patcher. Land use pattern of Menougou in 2030 for three kinds of scenarios: trend development, rapid development and ecological protection are simulated. The comparison shows that the trend development scenario is more reasonable based on social, economic and environmental considerations and other scenarios provide a reference for improving irrational land use.
  • GUO Yuan-zhi, ZHOU Yang, LIU Yan-sui
    2020, 17(02): 304-315.
    Equal access to education has long been a global concern and is important for rural revitalization strategy in the new era. However, little is known about the regional differences of educational resources in China, especially southwest China, where the spatial heterogeneity of human and physical geography is extremely significant. Using a dataset of primary and secondary schools of southwest China at county level in 2015, this study builds an index system to comprehensively measure the supply of educational resources, investigates the spatial pattern of educational resources via exploratory spatial data analysis(ESDA), and explores its influence factors through spatial econometrics. Results indicated that the supply level of educational resources in southwest China was relatively low; the high-high clusters of the supply of educational resources were mainly located in Sichuan Basin and the east of Western Sichuan Plateau, while the concentrated poverty-stricken areas of Guizhou and the border areas of Yunnan-SichuanGuizhou, especially Wumeng mountain area, were characterized by the low-low clusters. Furthermore, this study suggested that altitude, population density, local government revenue and rural residents' income were positively correlated with the supply of educational resources, while the negative influenceswere exerted by proportion of ethnic minority population and urbanization rate. And there were differences in the specific objects of actions of each factor. Ultimately, we proposed that village relocation and combination, as well as sustainable urbanization and regional development were practical paths to optimize the supply of educational resources in rural areas, thus promoting the modernization of agriculture and countryside.
  • BAI Yong-jian, WANG Yun-sheng, GE Hua, TIE Yong-bo
    2020, 17(02): 316-328.
    Rock–soil aggregate landslides(RSALs) are a common geological hazard in deeply incised valleys in southwestern China. Large-scale RSALs are widely distributed in the upper reaches of the Dadu River, Danba County, Sichuan Province, and are influenced by slope structure, which can be divided into open, lock, strip, and dumbbell types, as well as soil type and meso-structure, which can be classified as layered rock–soil aggregate, block-soil, and grainsoil. In this study, the evolution of four types of structures, such as layered-dumbbell, block-soil lock, banded block-soil, and block-soil open types, were analyzed by field surveys, surface and deep displacement monitoring, and Flac3 D. It was found that the Danba reach of the Dadu River showed incised valley through the evolution from wide to slow valley affected by internal and external geological processes since the Quaternary Glaciation. In the layered-dumbbell rock–soil aggregate, the main sliding pattern is multi-stage sliding at different depths. Circular sliding in the trailing edge and plane sliding along the bedrock in the front edge body occurin the block-soil-lock type aggregate. Large-scale multi-level and circular sliding over long distances occur in the banded block-soil aggregate. The blocksoil open type is stable, with only circular sliding occurring in local and shallow surfaces of the body. The monitoring and numerical simulation results further show that slope structure and regularity have diversified with RSALs. The results provide a basis for analyzing the stability mechanism of RSALs and preventing RSALs in deeply incised valleys.
  • CHEN Ning-sheng, ZHANG Yong, TIAN Shu-feng, DENG Ming-feng, WANG Tao, LIU Li-hong, LIU Mei, HU Gui-sheng
    2020, 17(02): 329-339.
    Debris-flow disasters occurred frequently after the Mw 8.0 Wenchuan earthquake on 12 May 2008 in Sichuan Province, China. Based on historical accounts of debris-flow disaster events, it found that debris flow occurrence is closely related to the impact of earthquakes and droughts, because earthquakedrought activities can increase the loose solid materials, which can transform into debris flows under the effect of rainstorms. Based on the analysis of historical earthquake activity(frequency, magnitude and location), drought indexes and the trend of climate change(amount of rainfall), a prediction method was established, and the regional debris flow susceptibility was predicted. Furthermore, in a debris flow-susceptible site, effective warning and monitoring are essential not only from an economicpoint of view but are also considered as a frontline approach to alleviate hazards. The advantages of the prediction and early monitoring include(1) the acquired results being sent to the central government for policy making;(2) lives and property in mountainous areas can be protected, such as the 570 residents in the Aizi valley, who evacuated successfully before debris flows in 2012;(3) guiding the government to identify the areas of disasters and the preparation for disaster prevention and mitigation, such as predicting disasters in high-risk areas in the period 2012-2017, helping the government to recognize the development trend of disasters;(4) the quantitative prediction of regional debris-flow susceptibility, such as after the Wenchuan earthquake, can promote scientific and sustainable development and socioeconomic planning in earthquake-struck areas.
  • ZHANG Yi-xing, LAN Heng-xing, LI Lang-ping, WU Yu-ming, CHEN Jun-hui, TIAN Nai-man
    2020, 17(02): 340-357.
    Bivariate statistical analysis of data-driven approaches is widely used for landslide susceptibility assessment, and the frequency ratio(FR) method is one of the most popular. However, the results of such assessments are dominated by the number of classes and bounds of landslide-related causative factors, and the optimal assessment is unknown. This paper optimizes the frequency ratio method as an example of bivariate statistical analysis for landslide susceptibility mapping based on a case study of the Caiyuan Basin, a region with frequent landslides, which is located in the southeast coastal mountainous area of China. A landslide inventory map containing a total of 1425 landslides(polygons) was produced, in which 70% of the landslides were selected for training purposes, and the remaining were used for validationpurposes. All datasets were resampled to the same 5 m × 5 m/pixel resolution. The receiver operating characteristic(ROC) curves of the susceptibility maps were obtained based on different combinations of dominating parameters, and the maximum value of the areas under the ROC curves(AUCs) as well as the corresponding optimal parameter was identified with an automatic searching algorithm. The results showed that the landslide susceptibility maps obtained using optimal parameters displayed a significant increase in the prediction AUC compared with those values obtained using stochastic parameters. The results also showed that one parameter named bin width has a dominant influence on the optimum. In practice, this paper is expected to benefit the assessment of landslide susceptibility by providing an easy-to-use tool. The proposed automatic approach provides a way to optimize the frequency ratio method or other bivariate statistical methods, which can furtherfacilitate comparisons and choices between different methods for landslide susceptibility assessment.
  • LI Ning, TANG Chuan, YANG Tao, CHEN Ming
    2020, 17(02): 358-372.
    The earthquake that occurred on May 12, 2008, in Wenchuan County aroused a great deal of research on co-seismic landslide susceptibility assessment, but there is still a lack of an evaluation method that considers the activity state of the landslide itself. Therefore, this paper establishes a new susceptibility evaluation model that superimposes the active landslide state based on previous susceptibility evaluation models. Based on a multi-phase landslide database, the probabilistic approach was used to evaluate landslide susceptibility in the Miansi town over many years. We chose the elevation, slope, aspect, and distance from the channel as trigger factors and then used the probability comprehensive discrimination method to calculate the probability of landslide occurrence. Then, the susceptibility results of each period were calculated by superposition with the activity rate. The results show that between 2008 and 2014, the proportion of areas with low landslide susceptibility in the study area was the largest, and the proportionof areas with the highest susceptibility was minimal. The landslide area with highest susceptibility gradually decreased from 2014 to 2017. However, in 2017, 15.06% of the area was still with high susceptibility, and relevant disaster prevention and reduction measures should be taken in these areas. The larger area under the receiver operating characteristic curve(AUC) indicates that the results of the landslide susceptibility assessment in this study are more objective and reliable than those of previous models. The difference in the AUC values over many years shows that the accuracy of the evaluation results of this model is not constant, and a greater number of landslides or higher landslide activity corresponds to a higher accuracy of the evaluation results.
  • Alejandro LOYDI, Flavia A.FUNK, Andrés GARCíA
    2020, 17(02): 373-383.
    Fire is a natural disturbance occurring every few years in many grasslands ecosystems. However, since European colonization, fire has been highly reduced or even suppressed in Argentinean grasslands, fostering ignitable material accumulation. This has led to occasional catastrophic controldemanding fire events, extended for larger areas. The aims of this work are to study vegetation recovery and change after a non-natural fire event in mountain grasslands. The study area is located in the Ventania mountain system, mid-eastern Argentina. We studied vegetation recovery after fire(January 2014) in two different communities: grass-steppes(grasslands) and shrub-steppes(open low shrublands). We measured vegetation cover, species richness and bare ground percentage in burned and unburned areas 1, 4, 8, 11 and 23 months after fire. Vegetation surveys were also performed at the end of the growing season(December) 11 and 23 months after fire. Data were analyzed using regression analysis, ANOVA and multivariate analysis(NMS, PERMANOVA). Both communities increased their vegetation cover at the same rate, without differences between burned and unburned areas after two years. Species richness was higher in shrublands and their recovery was alsofaster than in grasslands. Considering functional composition, besides transient changes during the first year after fire, there were no differences in abundance of different functional vegetation groups two years after fire. At the same time, shrublands showed no differences in species composition, while grasslands had a different species composition in burned and unburned plots. Also, burned grassland showed a higher species richness than unburned grassland. Data shown mountain vegetation in Pampas grassland is adapted to fire, recovering cover and richness rapidly after fire and thus reducing soil erosion risks. Vegetation in mountain Pampas seems to be well adapted to fire, but in grasslands species composition has changed due to fire. Nonetheless, these changes seem to be not permanent since prefire species are still present in the area.
  • SUN Ju-ying, SUN Xiang-yang, HU Zhao-yong, WANG Gen-xu
    2020, 17(02): 384-396.
    Evapotranspiration(ET) is a crucial part of the global hydrological cycle, and quantifying ET components is significant for understanding the global water cycle and energy balance. However, there is no consensus on the value of ET components, especially in topographic abrupt change zone, such as eastern margin of the Qinghai-Tibet Platea, where values of ET changes along the altitudinal gradients. Our aim is to explore the influencing factors in partitioning evapotranspiration and how ET components change with increasing elevations. A novel approach was proposed to estimate ET components by adding net solar radiation(Rn) instead of the vapor pressure deficit(VPD) into the underlying water use efficiency(u WUE) model based on one-year continuous measurements of flux data along the elevation gradient on Mount Gongga. Correlation analysis shows that the u WUE model's performance can be improved significantly by considering Rn instead of VPD, with correlation coefficients increasing by 35%-64%. The ratios of transpiration(T) to ET(T/ET) were 0.47, 0.48, 0.50 and 0.35 for the deciduous broadleaf forest(BF), mixed coniferous and deciduous broadleaf forest(MF), evergreen needle forest(ENF) and shrub land(SL), respectively. Leaf area index(LAI) and air temperature(Ta) were the two main controlling factors in determining T/ET during the growing season and at an annual scale, while Rn and Ta played more important roles during the dormant season. This study highlights the importance of incorporating Rn in partitioning evapotranspiration by using the water use efficiency(WUE) method in a humid mountainous region, which can improve the estimation of T/ET on a global scale.
  • Gheyur GHEYRET, Anwar MOHAMMAT, TANG Zhi-yao
    2020, 17(02): 397-414.
    The vertical distribution of vegetation types along an elevational gradient in mountain areas largely depends on the elevational changes in air temperature and humidity. In this study, we presented the seasonal and diurnal variations in the elevational gradients of air temperature and humidity on the southern and northern slopes in the middle Tianshan Mountain Range using data collected throughout the year via HOBO data loggers. The measurements were conducted at 12 different elevations from 1548 to 3277 m from September 2004 to August 2005. The results showed that the annual mean air temperature decreased along the elevational gradients with temperature lapse rates of(0.71±0.20)°C/100 m and(0.59±0.05)°C/100 m on the northern and southern slopes, respectively. The annual mean absolute humidity significantly decreased with increasing elevation on the northern slope but showed no significant trend on the southern slope. The annual mean relative humidity did not show a significant trend on the northern slope but increased with increasing elevation on the southern slope. The mean air temperature lapse rate exhibited significant seasonal variation, which is steeper insummer and shallower in winter, and this value varied between 0.37°C/100 m and 0.75°C/100 m on the southern slope and between 0.30°C/100 m and 1.02°C/100 m on the northern slope. The mean absolute and relative humidity also exhibited significant seasonal variations on both slopes, with the maximum occurring in summer and the minimum occurring in winter or spring. The monthly diurnal range of air temperature on both slopes was higher in spring than in winter. The annual range of air temperature on the southern slope was higher than that on the northern slope. Our results suggest that significant spatiotemporal variations in humidity and temperature lapse rate are useful when analyzing the relationships between species range sizes and climate in mountain areas.
  • LI Fa-Yong, YUAN Cheng-yu, YUAN Zi-Qiang, YOU Yong-jun, HU Xue-fei, WANG Shan, LI Guo-yu
    2020, 17(02): 410-425.
    Phosphorus(P) bioavailability is an important factor in alpine meadows and plays an important role in the response to climate change and the maintenance of ecosystem functioning.However,little is known about how environmental factors,such as elevation and slope aspect,affect soil P bioavailability.We explored the effects of elevational gradient and slope aspect on different forms of P and P availability in the alpine meadows on the southern slope of the Tian Shan Mountain range.Total P was found to be 851.9-1556.7 mg·kg~(-1) at different elevational gradients and 437.5-1547.0 mg·kg~(-1) at different slope aspects,and highest at 3337 and 3652 m.a.s.l.,but little differences between slope aspects.Olsen P and Labile P linearly increased with the elevational gradient.The valley and the base of the shady slope had higher contents of H_2O-Po.NaHCO_3-Pi,and NaHCO_3-Po,and high-active organic P(NaHCO_3-Po,NaOH-Po,and H_2O-Po) was positively correlated with soil total carbon(TC),total nitrogen(TN),soil organic carbon(SOC),and aboveground biomass(AGB),but was negatively correlated with pH,aluminum(Al),and calcium(Ca) at different elevational gradients.High-active bioavailable P(H_2OPi,H_2O-Po,NaHCO_3-Pi,and NaHCO_3-Po) was positively correlated with soil SOC and AGB and was negatively correlated with pH at different slope aspects.Our results suggest that soil P availability in alpine meadows is significantly controlled by topographical factors and the valleys and base of shady slopes are reservoirs of high-active bioavailable P.
  • ZHANG Xiao-yun, WU Kai-xian, FULLEN Michael A., WU Bo-zhi
    2020, 17(02): 423-435.
    Intercropping, as an overyielding system, can decrease soil erosion on sloping land through the presence of dense canopy covers. However, the structure mechanism in canopy is still unclear. We conducted a two-year field experiment on runoff plots, exploring whether the interaction between vegetation layers reduce soil erosion in maize and potato intercropping systems. The maize, potato, and weed layers in the intercropping system were removed by a single layer, two layers and three layers, respectively(total of 8 treatments including all layers removed as the control). Then, throughfall, runoff and sediment were measured at the plot and row scale on a weekly basis. Based on the difference between each treatment and the control, we calculated and found a relative reduction of runoff and sediment by any combination of the two vegetation layers greater than the sum of each single layer. In 2016 and 2017, the highest relative reduction of runoff reached 15.65% and 46.73%, respectively. Sediment loss decreased by 33.96% and 42.77%, respectively. Moreover, runoffand sediment reduced by the combination of all vegetation layers(no layers removed) was also larger than the sum of that by each single layer. In 2016 and 2017, the highest relative reduction of runoff reached 7.32% and 3.48%, respectively. So, there were synergistic effects among multi-level(two or three layers) vegetation layers in terms of decreasing soil erosion on sloping land. Maize redistributes more throughfall at the maize intra-specific row and the maize and potato inter-specific, which is favorable for the synergistic effect of reducing soil erosion. This finding shows an important mechanism of maize and potato intercropping for soil and water conservation, and may promote the application of diverse cropping systems for sustainable agriculture in mountainous areas.
  • DING Xin-hui, LIU Xiao-ying, LIU Guang-quan, NING Dui-hu, XIE Yong-sheng, HAO Xiao-dong, ZHOU Wei
    2020, 17(02): 435-447.
    Soil erosion from chestnut forests has many types and intensities. However, less attention has been paid to the increasing soil erosion in the chestnut forests of Yanshan Mountains region, North China. The objective of this study was to discuss forest ages(<5, 5~<10, 10~<20, and 20~ yr), slopes(5°~<15°, 15°~<25°, 25°~<35°, and 35°~), slope positions(upslope, midslope, downslope, and whole slope), and slope aspects(sunny, half-sunny, shade, and half-shade) effects on soil erosion types and intensities in chestnut forests. A field survey was applied to investigate in detail the contiguous chestnut forests near Changfu village of Hebei Province, China on October 9-30, 2016. Results showed that chestnut forests are dominated by moderate erosion in this region, and the soil erosionfrom chestnut forests tended to deteriorate gradually. The average land degradation index was 0.31. The erosion intensity from chestnut forests will gradually increase with the year of planting. Most of the slopes are greater than 15°, accounting for 86.7% of the total chestnut forests. Most of the chestnut forests occupy the whole slope, accounting for 47.5% of the total area. Moderate erosion occurs most commonly for different slope aspects. In conclusion, improving the preparation efficiency of chestnut forests and enhancing the construction standards of soil and water conservation measures would be useful measures to avoid soil erosion from chestnut forests reaching a more severe level.
  • XIANG Juan, ZHOU Jun-ju, YANG Jun-cang, HUANG Mei-hua, FENG Wei, LI Qiao-qiao, XUE Dong-xiang, ZHAO Ya-ru, ZHU Guo-feng
    2020, 17(02): 448-463.
    The Sugan Lake Basin is located in the inland arid region of northwestern China,in which groundwater is of great significance to human and ecology.Therefore,it is necessary to understand the chemical characteristics and quality of groundwater in the basin.Based on samples collected from 35 groundwater wells in Sugan Lake Basin,the spatial distribution characteristics of groundwater chemistry,main hydrogeochemical processes and groundwater quality have been discussed in this paper by using the multivariate statistics and hydrochemistry analysis methods.The results showed that the groundwater is weakly alkaline,and its total dissolved solid(TDS)and total hardness(TH) are high,with the average values of 1244.03 mg/L and 492.10 mg/L,respectively.The types of groundwater are mainly HCO_3~--SO_4~(2-)-Ca~(2+)type in the runoff area and Cl~--SO_4~(2-)-Na~+type in the catchment area.Rock weathering and ion exchange are the main controlling factors of regional groundwater chemistry,followed by evaporative crystallization,and human activities have less impact on groundwater.The spatial difference of groundwater quality is obvious,the water quality of the catchment area is not suitable for drinking,and the suitability for plant growth is also poor.The groundwater in the runoff area can be used for drinking,but the hardness is slightly higher,which is more suitable for ecological purpose.
  • CAI Shun, GENG Hao-peng, PAN Bao-tian, HONG Yang, CHEN Li-ping
    2020, 17(02): 464-483.
    The combination of different topographic and climatic conditions results in varied precipitation-runoff relations, which in turn influences hillslope erosion, sediment transport and bedrock incision across mountainous landscapes. The runoff coefficient is a suitable tool to represent precipitation-runoff relations, but the spatial distribution of the runoff coefficient across tectonically active mountains in semi-arid environments has received little attention because of limited data availability. We calculated annual runoff coefficients over 22 years for 26 drainage basins across the semi-arid Qilian Mountains based on:(i) annual discharge records; and(ii) the China Meteorological Forcing Dataset to enhance our understanding of the precipitation-runoff processes. The mean annual runoff coefficients show no obvious spatial trends. When compared to potential controlling factors, mean annual runoff coefficients are highly correlated with mean slope rather than any climatic characteristics(e.g., mean annualprecipitation and Normalized Difference Vegetation Index). The slope-dependent runoff coefficient could theoretically have enhanced the topographic control on erosion rates and dampen the influence of precipitation. The enhanced discharge for drainage basins with less precipitation but steep topography in the western Qilian Mountains will enable fluvial incision to keep pace with ongoing uplift caused by the northward growth of the Qilian Mountains. The geomorphic implications are that tectonic rather than climatic factors are more significant for long-term landscape evolution in arid and semi-arid contexts.
  • Kiyoumars ROUSHANGAR, Saman SHAHNAZI
    2020, 17(02): 480-491.
    It is important to have a reasonable estimation of sediment transport rate with respect to its significant role in the planning and management of water resources projects. The complicate nature of sediment transport in gravel-bed rivers causes inaccuracies of empirical formulas in the prediction of this phenomenon. Artificial intelligences as alternative approaches can provide solutions to such complex problems. The present study aimed at investigating the capability of kernel-based approaches in predicting total sediment loads and identification of influential parameters of total sediment transport. For this purpose, Gaussian process regression(GPR), Support vector machine(SVM) and kernel extreme learning machine(KELM) are applied to enhance the prediction level of total sediment loads in 19 mountain gravel-bed streams and rivers located in the United States. Several parameters based on two scenarios are investigated and consecutive predicted results are compared with some well-known formulas. Scenario 1 considers only hydraulic characteristics and on the other side, the second scenario was formed using hydraulic and sediment properties. The obtained results reveal that using the parameters of hydraulic conditions asinputs gives a good estimation of total sediment loads. Furthermore, it was revealed that KELM method with input parameters of Froude number(), ratio of average velocity((1) to shear velocity(*) and shields number( ) yields a correlation coefficient(R) of 0.951, a Nash-Sutcliffe efficiency(NSE) of 0.903 and root mean squared error(RMSE) of 0.021 and indicates superior results compared with other methods. Performing sensitivity analysis showed that the ratio of average velocity to shear flow velocity and the Froude number are the most effective parameters in predicting total sediment loads of gravel-bed rivers.
  • Recep KILI?, Koray ULAMI?
    2020, 17(02): 492-500.
    Discontinuities have significant role on the behavior of rock masses with respect to several types of instabilities. Excavability, deformability, bearing capacity and slope stability of the rock masses should be investigated considering the discontinuity characteristics with particular emphasis on the geomechanical properties. Kinematic analyses mostly provide an insight to the instabilities, however the dimensions of the blocks bounded by discontinuities, their geomechanical properties and the geometry of the slope should also to be taken into account. The study area is in the abandoned stone quarry in Bayrakl? district of ?zmir residential area. Due to the excavations and discontinuity orientations, instabilities have occured. Miocene aged andesites and altered agglomerates of Yamanlar Volcanics form the bimrock mass. The study area is located within a sheared zone, bounded by strike slip fault zone. Intact andesite blocks were encountered in altered agglomerate matrix, forming a volcanic bimrock. Wedge and planar sliding and block toppling were observed within the area. Detailed discontinuity surveying was conducted, combined with core drillings. Several typical locations were detected where prismatic blocks of andesites are bound to experience block toppling. Such locations are nearby the top of the steep slopes. Agglomerates are subjected to mainly sliding and the blocks have been formed not by gravity but by peculiarities of thevolcanic sedimentation and, probably by subsequent tectonics. In order to determine the mechanism of the sliding and toppling in more details, the relation of the blocks and the slope geometry were investigated. Bimrock type volcanic rock masses sometimes do not tend to accommodate the general rules of toppling and sliding due to their anisotropic settings.