过刊目录

  • 2020年, 17卷, 第01期
    刊出日期:2024-06-19
      

  • 全选
    |
  • Callie B.LAMBERT, Lynn M.RESLER, Yang SHAO, David R.BUTLER
    2020, 17(01): 1-15.
    Glacier recession is a globally occurring trend. Although a rich body of work has documented glacial response to climate warming, few studies have assessed vegetation cover change in recently deglaciated areas, especially using geospatial technologies. Here, vegetation change at two glacier forefronts in Glacier National Park, Montana, U.S.A.was quantified through remote sensing analysis,fieldwork validation, and statistical modeling.Specifically, we assessed the spatial and temporal patterns of landcover change at the two glacier forefronts in Glacier National Park and determined the role of selected biophysical terrain factors(elevation, slope, aspect, solar radiation, flow accumulation, topographic wetness index, and surficial geology) on vegetation change(from nonvegetated to vegetated cover) at the deglaciated areas.Landsat imagery of the study locations in 1991, 2003,and 2015 were classified and validated using visual interpretation. Model results revealed geographic differences in biophysical correlates of vegetation change between the study areas, suggesting that terrain variation is a key factor affecting spatialtemporal patterns of vegetation change. At Jackson Glacier forefront, increases in vegetation over some portion or all of the study period were negatively associated with elevation, slope angle, and consolidated bedrock. At Grinnell Glacier forefront,increases in vegetation associated negatively with elevation and positively with solar radiation.Integrated geospatial and field approaches to the study of vegetation change in recently deglaciated terrain are recommended to understand and monitor processes and patterns of ongoing habitat change in rapidly changing mountain environments.
  • Elena BABUSHKINA, Dina ZHIRNOVA, Liliana BELOKOPYTOVA, Eugene VAGANOV
    2020, 17(01): 16-30.
    The warming-driven increase of the vegetation season length impacts both net productivity and phenology of plants, changing an annual carbon cycle of terrestrial ecosystems. To evaluate this influence, tree growth along the temperature gradients can be investigated on various organization levels, beginning from detailed climatic records in xylem cells' number and morphometric parameters. In this study, the Borus Ridge of the Western Sayan Mountains(South Siberia) was considered as a forest area under rapid climate change caused by massive Sayano-Shushenskoe reservoir. Several parameters of the xylem anatomical structure in Siberian spruce(Picea obovata Ledeb.)were derived from normalized tracheidograms of cell radial diameter and cell wall thickness and analyzed during 50 years across elevational gradient(at 520,960, and 1320 m a.s.l.). On the regional scale, the main warming by 0.42°C per decade occurs during cold period(November–March). Construction of the reservoir accelerated local warming substantially since 1980, when abrupt shift of the cold season temperature by 2.6°C occurred. It led to the vegetation season beginning 3-6 days earlier and ending 4-10 day later with more stable summer heat supply. Two spatial patterns were found in climatic response of maximal cell wall thickness:(1)temperature has maximal impact during 21-day period, and its seasonality shifts with elevation in tune with temperature gradient;(2) response to the date of temperature passing +9.5°C threshold is observed at two higher sites. Climate change yielded significantly bigger early wood spruce tracheids at all sites, but its impact on cell wall deposition process had elevational gradient: maximal wall thickness increased by 7.9% at the treeline, by 18.2% mid-range,and decreased by 4.9% at the lower boundary of spruce growth; normalized total cell wall area increased by 6.2%-6.8% at two higher sites but remained stable at the lowest one. We believe that these patterns are caused by two mechanisms of spruce secondary growth cessation: "emergency"induced by temperature drop versus "regular" one in warmer conditions. Therefore, autumn lengthening of growth season stimulated wood matter accumulation in tracheid walls mainly in cold environment,increasing role of boreal and mountain forests in carbon cycle.
  • Magdalena KACPRZYK, Ewa B?O?SKA, Jaros?aw LASOTA
    2020, 17(01): 31-41.
    We investigated the relationships between dehydrogenase activity and the physicochemical properties of mountain soils over three and five years from Norway spruce(Picea abies L. Karst) logging residue spot burning and the occurrence of epigeic carabid beetles. Six study sites were utilised, including18 study plots(nine plots in a mixed coniferous mountain forest site and nine plots in a mixed broadleaf mountain forest site), with five replicate pitfall traps at each site located in southern Poland.Soil samples from the organic horizon were taken for p H, organic carbon, nitrogen, base cation content,acidity and dehydrogenase activity determination.Carabid beetles were monitored in weekly intervals during the period of July to August 2016. The burning of logging residues led to modified soil properties,especially the dehydrogenase activity. In all the tested variants, the activity was higher in soil samples after the burning in comparison to the control variants. We show no positive correlation between dehydrogenase activity and the number of carabid specimens. The preferences of dominant predatory hygrophilous carabids to acid habitats with weakly decomposed organic matter were proven. Simultaneously, the soil organic matter content was positively related to the carabid abundance. The significant impact of forest site conditions and the date of logging residue burning on the number of caught specimens were confirmed. In contrast, no relationships between the species richness, species diversity, mean individual biomass and spot burning effect were found. This work supports the recommendation of spruce fine woody debris utilisation by spot burning on mountain regions with rich habitats presenting moderate wet conditions and small land falls.
  • Ahmad KHAN, Ahmad SAID, Imran ULLAH
    2020, 17(01): 42-49.
    In the alpine regions of Hindu Kush,Himalayas and Karakorum, climatic and topographic conditions can support the formation of peat,important for the livelihood of the local communities,and ecological services alike. These peatlands are a source of fuel for the local community, habitat for nesting birds, and water regulation at source for rivers.Ground-based surveys of high-altitude peatlands are not only difficult, but also expensive and time consuming. Therefore, a method using cost-effective remote sensing technology is required. In this article we assessed the distribution and extent of highaltitude peatlands in a 2000 ha area of Broghil Valley using Landsat 8 data. The composite image was trained using a priori knowledge of the area, and classified into peatland and non-peatland land covers using a supervised decision tree algorithm. The Landsat-based classification map was compared with field data collected with a differential GPS. This comparison suggests 82% overall accuracy, which is fairly high for high altitude areas. The method was successfully applied and has the potential to be replicated for other areas in Pakistan and the highaltitude regions of the neighbouring Asian countries.
  • EWANE Basil Ewane, Heon Ho LEE
    2020, 17(01): 50-67.
    Uncontrolled land use land cover change(LULCC) is impacting watershed hydrology,particularly in tropical watersheds in developing countries. We assessed the extent of LULCC in the southern portion of the Nyong River basin through analysis of three land use maps in 1987, 2000 and2014. LULCC impact on hydrological variables of the Mbalmayo, Olama, Pont So'o, Messam, and Nsimi sub-watersheds of the southern portion of the Nyong River basin were evaluated by using the linear regression modeling and the Mann-Kendall test. This study reveals that dense forest cover decreased by16%, young secondary forest increased by 18%,agricultural/cropland increased by 10%, and built-up area/bare soil increased by 3% from 1987 to 2014.The decrease in dense forest cover at 0.6% per year on average was driven by indiscriminate expansion of subsistence agricultural/cropland through shifting and fallow cultivation farming systems. Nonsignificant trends in total discharge, high flows, and low flows were observed in the large sub-watersheds of Mbalmayo and Olama from 1998 to 2013 with LULCC within the watershed. In contrast, significant decreasing trends in stream discharge(up to-5.1%and-5.9%), and significant increasing trends in high flows(up to 2.1% and 6.3%), respectively, were observed in the small sub-watersheds of Pont So'o and Messam from 1998 to 2013, particularly with increase in agricultural/cropland cover and decrease in dense forest cover. However, we found nonsignificant trends in mean annual discharge and low flows for all and whole watershed with LULCC. The results reveal spatially varying trends of stream discharge, low flows and high flows among the subwatersheds with LULCC within the study watershed.The results suggest that the impacts of LULCC on watershed hydrology are easily detected in small subwatersheds than in large sub-watersheds. Therefore,the magnitude of dense forest cover loss must be significantly greater than 16% to cause significant changes and common trends in the hydrology of the sub-watersheds of the southern portion of the Nyong River basin. The Mann-Kendall and Regression approaches show appreciable potential for modelling the impacts of LULCC on the hydrology of the southern portion of the Nyong River basin and for informing forest management.
  • Peyman KARAMI, Sahar REZAEI, Shabnam SHADLOO, Morteza NADERI
    2020, 17(01): 68-82.
    Global climate change poses a new challenge for species and can even push some species toward an extinction vortex. The most affected organisms are those with narrow tolerance to the climatic factors but many large mammals such as ungulates with a wider ecological niche are also being affected indirectly. Our research mainly used wild sheep in central Iran as a model species to explore how the suitable habitats will change under different climatic scenarios and to determine if current borders of protected areas will adequately protect habitat requirements. To create habitat models we used animal-vehicle collision points as an input for species presence data. We ran habitat models using Max Ent modeling approach under different climatic scenarios of the past, present and future(under the climatic scenarios for minimum(RCP2.6) and maximum(RCP8.5) CO2 concentration trajectories). We tried to estimate the overlap and the width of the ecological niche using relevant metrics. In order to analyze the effectiveness of the protected areas, suitable maps were concerted to binary maps using True Skill Statistic(TSS) threshold and measured the similarity of the binary maps for each scenario using Kappa index. In order to assess the competence of the present protected areas boundary in covering the distribution of species, two different scenarios were employed, which are ensemble scenario 1: an ensemble of the binary maps of the species distribution in Mid-Holocene, present, and RCP2.6;and ensemble scenario 2: an ensemble of binary suitability maps in Mid-Holocene, present, and RCP8.5. Then, the borders of modeled habitats with the boundaries of 23 existing protected areas in two central provinces in Iran were compared. The predicted species distribution under scenario 1(RCP2.6) was mostly similar to its current distribution(Kappa = 0.53) while the output model under scenario 2(RCP8.5) indicated a decline in the species distribution range. Under the first ensemble scenario, current borders of the protected areas in Hamedan province showed better efficiency to cover the model species distribution range. Analyzing Max Ent spatial models under the second climatic scenario suggested that protected areas in both Markazi and Hamedan provinces will not cover "high suitability" areas in the future. Modeling the efficiency of the current protected areas under predicted future climatic scenarios can help the related authorities to plan conservation activities more efficiently.
  • XU Bo, WANG Jin-niu, SHI Fu-sun
    2020, 17(01): 83-94.
    Environmental variations and ontogeny may affect plant morphological traits and biomass allocation patterns that are related to the adjustments of plant ecological strategies. We selected 2-, 3-and 4-year-old Fritillaria unibracteata plants to explore the ontogenetic and altitudinal changes that impact their morphological traits(i.e., plant height, single leaf area,and specific leaf area) and biomass allocations [i.e.,biomass allocations of roots, bulbs, leaves, stems, and flowers] at relatively low altitudinal ranges(3400 m to 3600 m asl) and high altitudinal ranges(3600 m to4000 m asl). Our results indicated that plant height,root biomass allocation, and stem biomass allocation significantly increased during the process of individual growth and development, but single leaf area, specific leaf area, bulb biomass allocation, and leaf biomass allocation showed opposite trends.Furthermore, the impacts of altitudinal changes on morphological traits and biomass allocations had no significant differences at low altitude, except for single leaf area of 2-year-old plants. At high altitude,significantly reduced plant height, single leaf area and leaf biomass allocation for the 2-year-old plants,specific leaf area for the 2-and 4-year-old plants, and stem biomass allocation were found along altitudinal gradients. Significantly increased sexual reproductive allocation and relatively stable single leaf area and leaf biomass allocation were also observed for the 3-and 4-year-old plants. In addition, stable specific leaf area for the 3-year-old plants and root biomass allocation were recorded. These results suggested that the adaptive adjustments of alpine plants, in particular F. unibracteata were simultaneously influenced by altitudinal gradients and ontogeny.
  • Sareth NHEM, Young-jin LEE
    2020, 17(01): 95-116.
    Public and policy makers alike are concerned about national and global deforestation and forest degradation. These issues pose a significant threat to social, economic and environmental welfare.Attempts to prevent forest loss and increased attention to pilot REDD+ projects in community forestry sites would both deliver rural livelihood benefits and help to reduce adverse climate impacts.However, there has been no significant exploration of the viewpoints of local experts to determine the monitoring and action needed to support communitybased forestry and improve the governance of REDD+pilot projects in Cambodia. Therefore, this study aimed to assess the perceptions of local stakeholders towards the quality of governance of the first community forest REDD+ pilot project in Cambodia,employing Q-methodology. We adapted 11 indicators of the hierarchical framework of assessment of governance quality to design 40 Q-statements related to REDD+ governance or achievements. The 52 P-set ranked these Q-statements with respect to the community-based REDD+ pilot project. Our study revealed that local stakeholders held four distinct, and partially opposite, views, that:(1) the REDD+ project is successful because it is inclusiveness and capable of causing behavioral change;(2) REDD+ pilot projects should be led by government, not external or locally;and needs more resources;(3) the REDD+ pilot project has raised unrealistic expectations, would likely be a source of corruption and will probably not be successful for local people or halting deforestation;and(4) the REDD+ pilot project is inclusive but not very transparent and probably ineffective at protecting forest. Through these four varied perspectives from local people involved in the project,we can see that there remain serious challenges to the future of pilot community forestry REDD+ projects,including the complex interaction between the multinational actors and the local socio-ecological systems.To move forwards, this study suggested Cambodia should make a pro-poor REDD+ program,implementing more community-based REDD+projects which explicitly build the assets and capacity of the poorest households. This study also shows that Q-methodology can highlight the diverse viewpoints of local stakeholders concerning the quality of community forest REDD+ governance, helping policy makers, implementers and local stakeholders to better identify the challenges to be addressed.
  • Sugandha PANWAR
    2020, 17(01): 117-132.
    The climate change and unsustainable anthropogenic modification can intensify the vulnerability of the Himalayas. Natural springs are the principal source of potable water security for the Himalayan population. The changes in the trend of precipitation, temperature and glacier melt are expected to impact the quantity and quality of spring water significantly. This review presents an insight to unravel the effects of climate change and land use land cover changes on the spring resources and outline the essential elements of spring hydrology in the Himalayas. The sensitive response of spring flow to the climate has been observed to follows an annual periodic pattern strongly dependent on snowmelt,rainfall, and evapotranspiration. Among all types,Karst aquifers were found to be highly vulnerable. The changes in the forest and urban landscapes are affecting the recharging sites in the headwater region.In the Central Himalayan region(Kosi River basin,Kumaun), the number of perennial springs is decreasing at a rate of three springs year-1, and nonperennial springs are increasing at the rate of one spring year-1. The high concentration of NO3-, Cl-1,SO42-, and coliform counts reported from the spring water evidence a high susceptibility of shallow aquifers to the non-point source of pollution. Future projections indicate high surface-runoff and occurrence of extreme events such as floods, glacial lake outbursts, and landslides can affect the flow and water quality of springs. As the impact of climate change and anthropogenic activities are expected to increase with time remarkably, there is an urgent need to promote regional scientific studies on springs targeting hydrogeochemical evolution, vulnerability assessment, recharge area dynamics, and development of springshed management program.
  • CHEN Nan
    2020, 17(01): 133-146.
    Solar radiation is often shielded by terrain relief, especially in mountainous areas, before reaching the surface of the Earth. The objective of this paper is to study the spatial structures of the shielded astronomical solar radiation(SASR) and the possible sunshine duration(PSD) over the Loess Plateau. To this end, we chose six test areas representing different landforms over the Loess Plateau and the software package of Matlab was used as the main computing platform. In each test area, 5-m-resolution digital elevation model established from 1:10,000 scale topographic maps was used to compute the corresponding slope, SASR and PSD. Then, we defined the concepts of the slope-mean SASR spectrum and the slope-mean PSD spectrum, and proposed a method to extract them from the computed slope, SASR and PSD over rectangular analysis windows. Using this method, we found both spectrums in a year or in a season for each of the four seasons in the six test areas. Each spectrum was found only when the area of the corresponding rectangular analysis window was greater than the corresponding stable area of the spectrum. The values of the two spectrums decreased when the slope increased.Furthermore, the values of the stable areas of the spectrums in a year or in a season were positively correlated with the variable coefficients of the slope or the profile curvature. The values of the stable areas of the two spectrums in a year or in a season may represent the minimum value of test areas for corresponding future research on the spatial structures of the SASR or PSD. All the findings herein suggest that the spatial structures of the PSD and the SASR are caused by the interactions between solar radiation and terrain relief and that the method for extracting either spectrum is effective for detecting their spatial structures. This study may deepen our understanding of the spatial structure of solar radiation and help us further explore the distribution of solar energy in mountainous regions.
  • CHEN Yong, ZHOU Li-hua
    2020, 17(01): 147-155.
    Agricultural development in povertystricken areas is a major problem affecting agricultural modernization in China. This study discusses the restrictive factors affecting agricultural development in impoverished areas in China. A typical impoverished mountainous area, Min County,was selected for a case study. A regression analysis on the factors and characteristics of agricultural development in Min County between 1982 and 2017 was performed in this study. Taking agricultural output as the dependent variable, we selected nine main inputs of agricultural production in impoverished mountainous areas as the independent variables. Ridge regression analysis was carried out by testing for unit root and co-integration to verify the equilibrium relationship of the data. The results showed that the real Gross domestic product(GDP)per capita, the non-grain area ratio, the proportion of government expenditure on agriculture support to total expenditure, and the amount of chemical fertilizer applied in unit cultivated land area were the four most significant factors. The proportion of government expenditure on agriculture support to total expenditure was a negative influence, whereas the other three significant factors had a positive influence on agricultural output. This study highlights about the most significant factors affecting the agricultural development of impoverished mountainous regions in China.
  • LIU Mei, ZHANG Yong, TIAN Shu-feng, CHEN Ning-sheng, MAHFUZR Rahman, JAVED Iqbal
    2020, 17(01): 156-172.
    Loose deposits, rainfall and topography are three key factors that triggering debris flows.However, few studies have investigated the effects of loose deposits on the whole debris flow process.On June 28, 2012, a catastrophic debris flow occurred in the Aizi Valley, resulting in 40 deaths.The Aizi Valley is located in the Lower Jinsha River,southwestern Sichuan Province, China. The Aizi Valley debris flow has been selected as a case for addressing loose deposits effects on the whole debris flow process through remote sensing, field investigation and field experiments. Remote sensing interpretation and laboratory experiments were used to obtain the distribution and characteristics of the loose deposits, respectively. A field experiment was conducted to explore the mechanics of slope debris flows, and another field investigation was conducted to obtain the processes of debris flow formation, movement and amplification. The results showed that loose deposits preparation, slope debris flow initiation,gully debris flow confluence and valley debris flow amplification were dominated by the loose deposits.Antecedent droughts and earthquake activities may have increased the potential for loose soil sources in the Aizi Valley, which laid the foundation for debris flow formation. Slope debris flow initiated under rainfall, and the increase in the water content as well as the pore water pressure of the loose deposits were the key factors affecting slope failure. The nine gully debris flows converged in the valley, and the peak discharge was amplified 3.3 times due to a blockage and outburst caused by a large boulder. The results may help in predicting and assessing regional debris flows in dry-hot and seismic-prone areas based on loose deposits, especially considering large boulders.
  • WANG Tao, LIU Jia-mei, SHI Ju-song, GAO Meng-tan, WU Shu-ren
    2020, 17(01): 173-190.
    Probabilistic analysis in the field of seismic landslide hazard assessment is often based on an estimate of uncertainties of geological, geotechnical,geomorphological and seismological parameters.However, real situations are very complex and thus uncertainties of some parameters such as water content conditions and critical displacement are difficult to describe with accurate mathematical models. In this study, we present a probabilistic methodology based on the probabilistic seismic hazard analysis method and the Newmark's displacement model. The Tianshui seismic zone(105°00′-106°00′ E, 34°20′-34°40′ N) in the northeastern Tibetan Plateau were used as an example. Arias intensity with three standard probabilities of exceedance(63%, 10%, and 2% in 50 years) in accordance with building design provisions were used to compute Newmark displacements by incorporating the effects of topographic amplification.Probable scenarios of water content condition were considered and three water content conditions(dry,wet and saturated) were adopted to simulate the effect of pore-water on slope. The influence of 5 cm and 10 cm critical displacements were investigated in order to analyze the sensitivity of critical displacement to the probabilities of earthquake-induced landslide occurrence. The results show that water content in particular, have a great influence on the distribution of high seismic landslide hazard areas. Generally, the dry coverage analysis represents a lower bound for susceptibility and hazard assessment, and the saturated coverage analysis represents an upper bound to some extent. Moreover, high seismic landslide hazard areas are also influenced by the critical displacements. The slope failure probabilities during future earthquakes with critical displacements of 5 cm can increase by a factor of 1.2 to 2.3 as compared to that of 10 cm. It suggests that more efforts are required in order to obtain reasonable threshold values for slope failure. Considering the probable scenarios of water content condition which is varied with seasons, seismic landslide hazard assessments are carried out for frequent, occasional and rare earthquake occurrences in the Tianshui region, which can provide a valuable reference for landslide hazard management and infrastructure design in mountainous seismic zones.
  • HE Chun-can, HU Xin-li, XU Chu, WU Shuang-shuang, ZHANG Han, LIU Chang
    2020, 17(01): 191-202.
    Many landslides in reservoir areas continuously deform under cyclic water level fluctuations due to reservoir operations. In this paper,a landslide model, developed for a typical colluvial landslide in the Three Gorges Reservoir area, is used to study the effect of cyclic water level fluctuations on the landslide. Five cyclic water level fluctuations were implemented in the test, and the fluctuation rate in the last two fluctuations doubled over the first three fluctuations. The pore water pressure and lateral landslide profiles were obtained during the test. A measurement of the landslide soil loss was proposed to quantitatively evaluate the influence of water level fluctuations. The test results show that the first water level rising is most negative to the landslide among the five cycles. The fourth drawdown with a higher drawdown rate caused further large landslide deformation. An increase of the water level drawdown rate is much more unfavorable to the landslide than an increase of the water level rising rate. In addition, the landslide was found to have an adaptive ability to resist subsequent water level fluctuations after undergoing large deformation during a water level fluctuation. The landslide deformation and observations in the field were found to support the test results well.
  • ZHANG Yu-xin, WANG Yu-kuan, FU Bin, LI Ming, LU Ya-feng, DIXIT Amod Mani, CHAUDHARY Suresh, WANG Shan
    2020, 17(01): 203-215.
    Changes of cultivated land patterns caused by major water conservation projects are rarely reported. We selected the Three Gorges Reservoir area in China to study the change in area and landscape pattern of the cultivated land in the head,central, and tail areas of the reservoir that took place between 1992 and 2015; we then studied the spatial distribution of the cultivated land in the three parts of the reservoir; finally, we studied the driving forces behind the changes in the cultivated land. The results derived are as follows.(1) During the construction of the Three Gorges Project(TGP, 1992–2015), the area of cultivated land around the reservoir decreased by30.23 million ha. This reduction occurred in phases:the most severe change in cultivated land occurred during the later stage of the project(2002–2010);only 0.62 million ha of cultivated land did not change between 1992 and 2015.(2) Spatial pattern analysis showed that the cultivated land in the three parts of the reservoir changed from a northern distribution to a southern distribution; thus, the area of cultivated land in the north decreased over the time period. The area of cultivated land in the head and tail areas decreased by varying degrees, while it increased in the central area over the 23 years, indicating that the change in cultivated land showed regional differences.(3) The TGP, the policy of reverting farmland to forest,and urbanization were the main driving factors for the change of cultivated land, but there were differences in their impacts at different stages.(4) According to the patch dynamics of the land cover change, the degree of change gradually intensified during the early and later stages of the project and then stabilized during the operational period. Our research provides scientific support for the protection of cultivated land resources and food security in the reservoir area and for the coordination of social and economic development, which is of great significance to sustainable development in the reservoir area.
  • HUANG Bo-lin, WANG Jian, ZHANG Quan, LUO Chao-lin, CHEN Xiao-ting
    2020, 17(01): 216-229.
    The high-density gravitational collapse of granular columns is very similar to the movements of large collapsing columns in nature. Based on the development of dangerous columnar rock mass in fields, granular column collapse boundary condition in the physical experiments of this study is a new type of boundary conditions with a single free face and a three-dimensional deposit. Physical experiments have shown that the mobility of small particles during the collapse of granular columns was greater than that of large particles. For example, when particle size was increased from 5 to 15 mm, deposit runout was decreased by about 16.4%. When a column consisted of two particle types with different sizes, these particles could mix in the vicinity of layer interfaces and small particles might increase the mobility of large particles. In the process of collapse, potential and kinetic energy conversion rate is fluctuated. By increasing initial aspect ratio a, the ratio of the initial height of column to its length along flow direction,potential and kinetic energy conversion rate is decreased. For example, as a was increased from 0.5 to 4, the ratio of maximum kinetic energy obtained and total potential energy loss was decreased from47.6% to 7.4%. After movement stopped, an almost trapezoidal body remained in the column and a fanlike or fan-shaped accumulation was formed on the periphery of column. Using multiple exponential functions of the aspect ratio a, the planar morphology of the collapse deposit of granular columns could be quantitatively characterized. The movement of pillar dangerous rock masses with collapse failure mode could be evaluated using this granular column experimental results.
  • QU Li-ming, DING Xuan-ming, WU Chong-rong, LONG Yong-hong, YANG Jin-chuan
    2020, 17(01): 230-243.
    This paper describes model tests of single piles subjected to vertical cyclic compressive loading for three kinds of topography: sloping ground, level ground, and inclined bedrock. Comprehensive dynamic responses involving cyclic effects and vibration behaviours are studied under various load combinations of dynamic amplitude, mean load,frequency and number of cycles. Test results show that permanent settlement can generally be predicted with a quadratic function or power function of cycles.Sloping ground topography produces more pronounced settlement than level ground under the same load condition. For vibration behaviour,displacement amplitude is weakly affected by the number of cycles, while load amplitude significantly influences dynamic responses. Test results also reveal that increasing load amplitude intensifies nonlinearity and topography effects. The strain distribution in a pile and soil stress at the pile tip are displayed to investigate the vibration mechanism accounting for sloping ground effects. Furthermore, the dynamic characteristics among three kinds of topography in the elastic stage are studied using a three-dimensional finite method. Numerical results are validated by comparing with experimental results for base inclination topography. An inclined soil profile boundary causes non-axisymmetric resultant deformation, though a small difference in vertical displacement is observed.
  • XU Jing-song, XU Hua, SUN Run-fang, ZHAO Xiang-wei, CHENG Yin
    2020, 17(01): 244-260.
    Seismic risk evaluation(SRE) in early stages(e.g., project planning and preliminary design)for a mountain tunnel located in seismic areas has the same importance as that in final stages(e.g.,performance-based design, structural analysis, and optimization). SRE for planning mountain tunnels bridges the gap between the planning on the macro level and the design/analysis on the micro level regarding the risk management of infrastructural systems. A transition from subjective or qualitative description to objective or quantitative quantification of seismic risk is aimed to improve the seismic behavior of the mountain tunnel and thus reduce the associated seismic risk. A new method of systematic SRE for the planning mountain tunnel was presented herein. The method employs extension theory(ET)and an ET-based improved analytical hierarchy process. Additionally, a new risk-classification criterion is proposed to classify and quantify the seismic risk for a planning mountain tunnel. This SRE method is applied to a mountain tunnel in southwest China, using the extension model based on matter element theory and dependent function operation.The reasonability and flexibility of the SRE method for application to the mountain tunnel are illustrated.According to different seismic risk levels and classification criteria, methods and measures for improving the seismic design are proposed, which can reduce the seismic risk and provide a frame of reference for elaborate seismic design.