Research article
WANG Xiaochen, LI Zhi, CHEN Yaning, ZHU Jianyu, WANG Chuan, WANG Jiayou, ZHANG Xueqi, FENG Meiqing, LIANG Qixiang
The Tarim River Basin (TRB) is a vast area with plenty of light and heat and is an important base for grain and cotton production in Northwest China. In the context of climate change, however, the increased frequency of extreme weather and climate events is having numerous negative impacts on the region's agricultural production. To better understand how unfavorable climatic conditions affect crop production, we explored the relationship of extreme weather and climate events with crop yields and phenology. In this research, ten indicators of extreme weather and climate events (consecutive dry days (CDD), min Tmax (TXn), max Tmin (TNx), tropical nights (TR), warm days (Tx90p), warm nights (Tn90p), summer days (SU), frost days (FD), very wet days (R95p), and windy days (WD)) were selected to analyze the impact of spatial and temporal variations on the yields of major crops (wheat, maize, and cotton) in the TRB from 1990 to 2020. The three key findings of this research were as follows: extreme temperatures in southwestern TRB showed an increasing trend, with higher extreme temperatures at night, while the occurrence of extreme weather and climate events in northeastern TRB was relatively low. The number of FD was on the rise, while WD also increased in recent years. Crop yields were higher in the northeast compared with the southwest, and wheat, maize, and cotton yields generally showed an increasing trend despite an earlier decline. The correlation of extreme weather and climate events on crop yields can be categorized as extreme nighttime temperature indices (TNx, Tn90p, TR, and FD), extreme daytime temperature indices (TXn, Tx90p, and SU), extreme precipitation indices (CDD and R95p), and extreme wind (WD). By using Random Forest (RF) approach to determine the effects of different extreme weather and climate events on the yields of different crops, we found that the importance of extreme precipitation indices (CDD and R95p) to crop yield decreased significantly over time. As well, we found that the importance of the extreme nighttime temperature (TR and TNx) for the yields of the three crops increased during 2005-2020 compared with 1990-2005. The impact of extreme temperature events on wheat, maize, and cotton yields in the TRB is becoming increasingly significant, and this finding can inform policy decisions and agronomic innovations to better cope with current and future climate warming.