天气与气候

腾格里沙漠表土磁化率的指示意义

  • 霍斌昱 ,
  • 郭本泓 ,
  • 刘成英 ,
  • 徐恒明 ,
  • 蒋宇强
展开
  • 兰州大学地质科学与矿产资源学院,甘肃省西部矿产资源重点实验室,甘肃 兰州 730000
刘成英. E-mail:

霍斌昱(1998-),男,硕士研究生,主要从事干旱区环境磁学研究. E-mail:

收稿日期: 2024-12-16

  修回日期: 2025-03-03

  网络出版日期: 2025-08-14

基金资助

国家自然科学基金项目(42274100)

国家自然科学基金项目(42372208)

第三次新疆综合科学考察项目(2023xjkk0100)

Significance of surface soil magnetic susceptibility in the Tengger Desert

  • HUO Binyu ,
  • GUO Benhong ,
  • LIU Chengying ,
  • XU Hengming ,
  • JIANG Yuqiang
Expand
  • School of Earth Sciences, Lanzhou University, Key of Laboratory Mineral Resources in Western China (Gansu Province), Lanzhou 730000, Gansu, China

Received date: 2024-12-16

  Revised date: 2025-03-03

  Online published: 2025-08-14

摘要

解析磁化率指标在干旱区沉积物中的指示意义对理解干旱区过去降水历史和粉尘物源变化具有重要意义。然而,干旱区表土磁化率变化指示降水还是物源仍存争议。腾格里沙漠位于季风边缘区,已开展了丰富的物源工作,是研究沙漠表土磁化率指示意义的理想区域。本文采集了腾格里沙漠大范围表土和石羊河表层沉积物样品开展研究。结果显示:腾格里沙漠表土磁化率、百分比频率磁化率与降水相关性较低(R2=0.01和R2=0.02),不能指示降水变化。结合前人结果综合分析发现,沙漠表土磁化率的空间差异较大时,具有反映物源变化潜力;沙漠表土磁化率空间变化较小时,不能有效区分物源。在干旱区开展气候环境研究时,应用单一磁化率指标解释物源和环境变化时需充分考虑其多解性。

本文引用格式

霍斌昱 , 郭本泓 , 刘成英 , 徐恒明 , 蒋宇强 . 腾格里沙漠表土磁化率的指示意义[J]. 干旱区研究, 2025 , 42(4) : 613 -621 . DOI: 10.13866/j.azr.2025.04.04

Abstract

The magnetic susceptibility of soils is crucial for paleoenvironmental and paleoclimatic studies. However, debate persists regarding whether soil magnetic susceptibility can serve for paleoprecipitation reconstruction or reflects changes in prevenance in arid regions. To address this issue, new magnetic measurements were conducted on modern soil samples across the Tengger Desert, on the edge of the East Asian summer monsoon region. The weak correlation between the soil magnetic susceptibility, frequency-dependent susceptibility, and modern mean annual precipitation (R2=0.01 and 0.02) suggests that precipitation is not the primary factor driving variations in the surface soil magnetic susceptibility in the Tengger Desert. Conversely, distinct magnetic differences among arid regions indicate that soil magnetic susceptibility can differentiate between origin areas. These findings underscore the need for careful interpretation of soil magnetic susceptibility when conducting climate and environmental research in arid regions.

干旱区环境变化研究对于理解极端气候事件发生的频率、强度,以及全球变暖背景下人类可持续发展意义重大[1]。干旱区覆盖了40%以上的地球陆地,包括超过1/3的全球生物多样性热点区域[2]。干旱区还是反映全球气候变化的敏感区,20世纪绝大多数严重干旱事件(降水骤减并持续多年)都发生在干旱区[2-3]。干旱区对地球变暖的贡献已超过40%[1]。其中,亚洲内陆干旱区每年释放约180~580 Tg(百万吨)的粉尘[4],这些粉尘通过大气输送沉积到北太平洋、北美和格陵兰等下风区域,显著影响了全球环境变化[5-6]。此外,干旱区水资源、生态和民生问题将随着人口增长和经济社会发展更加突出[2]。因此,干旱区生态环境安全与经济社会可持续发展问题,已被国际社会重点关注。
干旱区气候未来怎样变化、区域可持续发展如何决策,都基于对气候变化规律和机制的深入认识[1-2]。磁化率具有测量快捷、经济高效、无污染的优点[7],广泛应用在干旱区环境变化研究中[8-10]。然而,干旱区表土沉积物的磁化率究竟是指示降水变化还是物源变化尚未获得共识。例如,谷永健等[11]通过对中国东部表土磁化率研究认为,当多年平均降水量大于200 mm时,浑善达克沙地和科尔沁沙地的表土磁化率可以有效指示降水的变化。郭凤战等[12]通过对浑善达克沙地表土的色度、赤铁矿/针铁矿、磁化率等多个指标与气候研究发现,其表土磁化率不能指示降水变化,可能受到了物源的影响。此外,对嫩江沙地表土的磁化率研究表明磁化率不能指示降水的变化[13]
在腾格里沙漠开展表土磁化率的指示意义研究具有优势。腾格里沙漠位于东亚夏季风影响的边缘区,降水量自东南至西北方向逐渐减少,是气候变化的敏感区[14]。现已在腾格里沙漠开展了广泛的物源研究,如使用锆石年龄谱[15]、地球化学元素(La/Yb)[16]、石英的电子自旋共振信号强度及结晶度[17]等方法初步厘清了现今腾格里沙漠物源存在南北差异。Zhang等[15]对腾格里沙漠和潜在物源区的锆石(U-Pb)年龄研究发现,腾格里沙漠北部表层风成砂的锆石(U-Pb)年龄谱(400~200 Ma)与戈壁阿尔泰山脉表层沉积物(405~252 Ma)相似,而腾格里沙漠南部表层风成砂(550~350 Ma)的主要年龄谱与青藏高原东北部表层沉积物(550~350 Ma、350~230 Ma)相当。Jiang等[16]使用腾格里沙漠表层粗粒沉积物(≥63 μm)的Eu/Eu、La/Yb等参数研究认为,沙漠东南/西北部的源区分别是阿拉善高原和青藏高原东北部。然而,Hällberg等[18]在腾格里沙漠开展表土磁化率研究(n=16)的结果指示南北部可能具有统一的物源区。同时,腾格里沙漠内仍缺少表土磁化率与降水量关系的研究。为了深入理解腾格里沙漠表土磁化率与降水、物源的关系,笔者在腾格里沙漠沿着东西和南北方向进行了系统采样(n=63),结合区域数据对比,对本区表土磁化率的指示意义有了进一步认识。

1 材料与方法

1.1 研究区概况

腾格里沙漠(37°27′~40°00′N,102°15′~105°41′E)位于现今东亚季风边缘(图1a),是亚洲季风和西风带气流相互作用的过渡区[19-20],属于中国西北内陆干旱区[21],是中国第四大沙漠,面积约为4.27×104 km2,北部邻近雅布赖山、东部紧靠贺兰山、西南部为祁连山,海拔高度为1100~2000 m[22-23],大体上西南高、东北低[24]。石羊河发育于祁连山,流经腾格里沙漠西部[25]。沙漠内年均气温为7.8 ℃,主要的降水(80%)集中在夏季,年均降水量从东南方向(190 mm)向西北方向(100 mm)逐渐减少,年均蒸发量为2200~3000 mm[14,26]。沙漠的年均风速在1.8~3.8 m·s-1之间,主要风向为西北至东南方向[27]。沙漠中包含大小湖盆422个,其中251个积水,大部分为第三纪残留湖,多为水量较少的草湖,主要为地下水补给或临时积水[28]。沙漠内部地表景观以流动沙丘为主,植被盖度相对较低、物种组成较为简单,以草本植物和灌木为主[29-30]
图1 研究区地理位置[30](a)及腾格里沙漠表土样品(b)及相关研究

注:图(a)绿色虚线示意东亚季风边界[14];图(b)深灰色/灰色/浅灰色圆形表土样品为引用数据[18]

Fig. 1 Geographical location map of the study area[30] (a), sampling localities in the Tengger Desert and relevant samples (b)

1.2 样品及实验

为避免人为干扰,选择远离公路和城镇采样。采样时,先清除表层枯枝落叶等杂质,然后采集0~5 cm的表层沉积物装入塑料密封袋内并标注编号,详细记录每个采样点的自然地理特征。在腾格里沙漠沿东西和南北方向对沙漠进行系统采样(图1b),共采集了63个样品,其中包括表土(风成砂)50个、河流沉积物13个。在实验室内,首先取部分样品装入纸质信封袋,其余样品密封保存。将信封中的样品放入烘箱中进行低温烘干(温度控制在不超过40 ℃)。烘干后,称取5~6 g样品,并用塑料薄膜包裹紧密。随后,将样品装入体积为8 cm3(2 cm×2 cm×2 cm)的立方体无磁性样品盒内,并进行压实处理。最后,使用捷克Agico公司生产的多功能卡帕桥磁化率仪(Kappabridge-MFK2-FA),在200 A·m-1磁场中分别测量样品的低频磁化率(χlf,976 Hz)和高频磁化率(χhf,15616 Hz)。实验在中国科学院地质与地球物理研究所古地磁与年代学实验室完成。依据低频磁化率和高频磁化率计算出百分比频率磁化率(χfd%),计算公式[31]为:
χ f d % = χ l f - χ h f χ l f × 100 %

1.3 气象数据获取

本研究通过国家青藏高原科学数据中心(https://data.tpdc.ac.cn/)获取腾格里沙漠近83 a(1940—2022年)的降水数据集。该数据集是基于CRU发布的全球0.5°气候数据集和WorldClim的全球高分辨率气候数据集,通过Delta空间降尺度方法在中国地区生成,空间分辨率为1 km。并通过496个独立气象观测点对数据集进行验证,结果显示,该数据集可信度较高[32]。随后,使用ArcGIS软件采用克里金插值法,将数据插值到网格单元上,进一步提取每个采样点的多年平均降水(MAP)。

2 结果与分析

2.1 腾格里沙漠表土和石羊河表层沉积物磁化率、百分比频率磁化率

腾格里沙漠表土磁化率(χlf)值的变化范围为12.60×10-8~60.06×10-8 m3·kg-1,平均值为(30.06±10.63)×10-8 m3·kg-1图2a1)。腾格里沙漠表土百分比频率磁化率在0%~3.26%之间变化,平均值为(1.23±0.79)%(图2a2)。腾格里沙漠中6个表土和1个河流沉积物样品的百分比频率磁化率多次测量为负值,将这7个样品的百分比频率磁化率结果赋值为0。其中,腾格里沙漠北部(n=24)和南部(n=26)表土磁化率、百分比频率磁化率以及频率磁化率的平均值分别为:(29.11±11.39)×10-8 m3·kg-1和(30.95±9.78)×10-8 m3·kg-1、(1.42±0.89)%和(1.06±0.64)%、(0.40±0.30)×10-8 m3·kg-1和(0.32±0.20)× 10-8 m3·kg-1,显示出腾格里沙漠北部与沙漠南部无明显差别。进一步对表土磁化率和百分比频率磁化率、频率磁化率的相关分析显示(图2b图2c),沙漠表土磁化率与两者的相关性均较低(n=50,R2= 0.19、R2=0.03)。石羊河表层沉积物磁化率的变化范围为9.46×10-8~44.66×10-8 m3·kg-1,平均值为(20.41±8.86)×10-8 m3·kg-1,略低于沙漠区域内的表土磁化率值,其百分比频率磁化率在0%~3.28%之间变化,平均值为(1.64±0.88)%,频率磁化率平均值为(0.32±0.17)×10-8 m3·kg-1,与腾格里沙漠表土相当(图2a)。腾格里沙漠表土和石羊河表层沉积物样品磁化率和百分比频率磁化率、频率磁化率的相关性也较低(n=63,R2=0.06、R2=0.11,图2b图2c)。
图2 腾格里沙漠表土和石羊河表层沉积物的磁化率参数空间变化及相关性分析

注:图(a)中虚线代表平均值。χlf表示低频磁化率,χfd%表示百分比频率磁化率,χfd表示频率磁化率。

Fig. 2 Spatial variation and correlation analysis of magnetic susceptibility parameters for surface soil in the Tengger Desert and surface sediments of the Shiyang River

2.2 腾格里沙漠表土磁化率、百分比频率磁化率与降水的关系

采样区域内通过63个样品点获得多年平均降水(MAP)的变化范围为90~280 mm。腾格里沙漠表土磁化率、百分比频率磁化率与多年平均降水(MAP)的相关性分析显示,表土磁化率、百分比频率磁化率与MAP几乎不相关(R2=0.01和R2=0.02)(图3)。世界范围内开展的表土环境磁学研究认为,表土磁化率与MAP呈复杂关系[33-34]。中国黄土高原表土磁化率与气候的定量研究中发现,当300 mm<MAP<1000 mm时,表土磁化率和百分比频率磁化率和MAP均呈显著正相关[35-38]。与其他降水大致相同的地区,如美国芬尼曼草原和俄罗斯大草原的表土磁学研究发现,表土磁化率值与MAP也呈正相关变化[39-40]。这些地区表土磁化率增强的主控因素是降水量的大小,即降水使表层沉积物发生成土作用,生成新的细颗粒磁性矿物[主要在超顺磁(SP)颗粒和单畴(SD)临界值附近,20~25 nm],成土作用的大小与降水量呈正相关[41-43]
图3 腾格里沙漠表土磁化率参数与多年平均降水(MAP)的相关性分析

Fig. 3 Correlation analysis between magnetic susceptibility parameters of surface soil in the Tengger Desert and mean annual precipitation (MAP)

当降水量很大(大于1000~1500 mm)时,表土磁化率与MAP显示出负相关。Maher等[44]对北半球的研究发现,当MAP>1500 mm时,区域表土磁化率值随降水的增加而减小。Balsam等[34]对全球热带和温带地区表土磁化率与MAP研究发现,表土磁化率值随MAP增大呈先增加后减小的变化特征,转折点发生在1000~1200 mm附近。海南岛的相关表土环境磁学研究表明,当MAP>1400 mm时,海南岛表土磁化率值与MAP也呈现出负相关变化[45]。其主要机制是降水量过多时,会使沉积物中磁性矿物溶解和破坏,导致沉积物磁化率下降[46-48]。长期处于相对湿度较大的环境时,也可能会使表层沉积物的磁性矿物发生溶解。例如在高纬度年蒸发量较低、相对湿度较大的阿拉斯加[49]、西伯利亚[50]和阿根廷[51]等地区,黄土-古土壤剖面中的古土壤层的磁化率降低[31,46]
部分干旱区(MAP<200~300 mm)的研究发现,表土磁化率与MAP几乎不相关[52-53],其主要原因是干旱区的降水量稀少时,表土沉积物几乎不发生成土作用[11,53]。例如,祁连山及周边(MAP<200 mm)地区的表土磁化率变化几乎不受降水的影响[54]。对我国东部地区的相关研究也表明,当MAP<200 mm时,表土沉积物中亚铁磁性矿物的生成受到限制[11]。腾格里沙漠表土沉积物的百分比频率磁化率值均< 4%,沙漠表土磁化率与百分比频率磁化率、频率磁化率均不相关(图2b图2c),指示超顺磁细颗粒磁性矿物含量很低,成土作用较弱,其磁化率的变化主要受PSD/MD颗粒的控制[8,55]

2.3 腾格里沙漠表土磁化率与物源的关系

干旱区表土沉积物沉积后因沉降区的降雨量小,其成土作用微弱或未发生[53]。物源区磁学性质的差异会使沉积区沉积物磁性矿物的种类、含量及粒径发生变化[56-58]。例如,魏海涛等[52]和昝金波等[59]的研究显示,新疆现代沙漠样品的磁性矿物以磁铁矿和赤铁矿为主,几乎不含磁赤铁矿,表明这些地区现代风成砂中的磁铁矿和赤铁矿主要来自物理风化作用,磁化率的变化可能主要由原生磁性矿物的特性决定。腾格里沙漠表土沉积物的磁学研究也表明,其主要的磁性矿物为磁铁矿,磁赤铁矿含量很少或者没有[60]
根据腾格里沙漠表土和河流沉积物的磁化率-百分比频率磁化率散点分布显示(图4a),沙漠南部、北部表土和河流沉积物的磁学性质比较均匀(10×10-8 m3·kg-1lf<70×10-8 m3·kg-1,0%<χfd%<4%)。Hällberg等[18]对东、西毛乌素沙地和腾格里沙漠的表土磁学研究指示,东部沙地与西部沙地表土的磁学特征差异较大(图4b)。这与地球化学方法指示的物源结果一致,均认为毛乌素沙地东部表土沉积物来自毛乌素沙地和鄂尔多斯高原的下垫基岩[61-63]。西部毛乌素沙地与腾格里沙漠的表土磁学特征类似,可能这两个地区的沉积物均受到源自黄河或青藏高原东北部的影响[15,61,64],显示磁化率指标具有指示物源的潜力。东、西毛乌素沙地表土磁化率的最大区别在于沙地东部表土具有更高的频率磁化率百分值(4%<χfd%<7%),而西部表土的磁化率值变化范围更大(10×10-8 m3·kg-1lf<70×10-8 m3·kg-1)、频率磁化率百分值低(0%<χfd%<4%),在磁化率-百分比频率磁化率图上分布在不同区域[18]。在Hällberg等[18]的工作基础上,笔者将腾格里沙漠南部、北部表土和毛乌素沙地表土的磁学性质对比研究发现(图4b),腾格里沙漠表土与西部毛乌素沙地的表土磁学特征相似,与东部毛乌素沙地表土的磁学特征存在较大差异,与前人在该区中的物源研究结果一致。
图4 腾格里沙漠/毛乌素沙地表土和石羊河表层沉积物的磁化率和百分比频率磁化率散点图

注:深灰色/灰色/浅灰色圆形表土样品为引用数据[18]

Fig. 4 Plot of χlf vs χfd% for surface soil from the Tengger Desert/Mu Us Desert and surface sediments of the Shiyang River

前人研究指示腾格里沙漠南部和北部物源不同[15-16]。锆石(U-Pb)年龄、地球化学、锆石形态等方法的物源分析认为,腾格里沙漠北部源区是沙漠以北的阿拉善高原和戈壁阿尔泰山脉,沙漠南部源区是青藏高原东北部,整体上还受到了沙漠内部基岩的影响[15-16,65-68]。然而,腾格里沙漠北缘-阿拉善高原表土磁化率结果显示,雅布赖山东西两侧的表土磁化率值主要在18.30×10-8~62.60×10-8 m3·kg-1之间,频率磁化率百分值整体偏小(χfd%<3.7%)[69],与腾格里沙漠表土的磁学特征相似。本研究显示,石羊河表层沉积物的磁化率特征与腾格里沙漠南部、北部表土的磁学特征也相似(图4b)。石羊河发源于青藏高原东北部,可能携带其发源地的沉积物供应腾格里沙漠[16,30,67,70-71]。腾格里沙漠南部和北部样品的磁学特征未显示明显差异,可能与源区的磁性性质相似有关。在黄土高原的研究中,王友郡[72]发现,黄土高原西部的潜在源区的环境磁学指标(χARMlf、χARM/SIRM)不存在明显差别,使磁学指标难以有效区分黄土高原西部的潜在物源区。现今腾格里沙漠有足够的风能使沙漠表层沉积物发生流动[22,27],来自不同源区的沉积物在沙漠中充分混合,也可能导致沙漠表土磁化率表现出相似的特征。
磁学指标中除了磁化率之外,还包括饱和等温剩磁(SIRM)、非磁滞剩磁磁化率(χARM)等多个独立参数可能反映物源变化[7,73-75]。例如,王双等[74]通过SIRM/χlf确定了黄渤海地区沉积物受到来自黄河、长江、渤海周边河流等三个不同流域的影响。张国程[75]对天山地区表土磁学空间分异特征研究认为,χARM的差异指示库米什盆地受到了中远源物质影响,而吐鲁番盆地受到了近源物质影响。因此,当干旱区表土磁化率区域差异较小时,可以考虑利用多个磁学指标,如SIRM、χARM等反映源区信息。此外,物源分析的其他技术手段,如粒度分析[76]、地球化学元素测定[77]、同位素分析[78-79]、锆石(U-Pb)年代谱测定[63-64]、石英电子自旋共振信号强度和结晶度研究[17]等也有助于厘清干旱区表土沉积物的物源。

3 结论

通过对腾格里沙漠内部大范围表层风成砂和石羊河表层沉积物的磁化率研究,以及对毛乌素沙地的结果综合分析,得出以下主要结论:
(1) 腾格里沙漠内部表层风成砂和石羊河表层沉积物的磁化率值相当,均显示较低值;腾格里沙漠南部和北部表土磁化率无明显差别。
(2) 腾格里沙漠表层沉积物的磁化率与多年平均降水无显著相关性,指示其不能有效指示降水量变化。
(3) 沙漠表土磁化率的空间差异较大时,其磁化率指标可能具有识别不同物源区的潜力;当沙漠表土磁化率空间差异较小时,可能由于源区物质的磁学性质接近或者风力混合作用等因素导致不能有效区别其物源区,建议结合其他磁学参数或者利用其他技术手段进一步厘清。

此次气象数据获取得到了国家青藏高原科学数据中心(http://data.tpdc.ac.cn)的支持,李再军老师对本文的撰写提出了宝贵意见,在此表示衷心的感谢!

[1]
黄建平, 季明霞, 刘玉芝, 等. 干旱半干旱区气候变化研究综述[J]. 气候变化研究进展, 2013, 9(1): 9-14.

[Huang Jianpin, Ji Mingxia, Liu Yuzhi, et al. An overview of arid and semi-arid climate change[J]. Climate Change Research, 2013, 9(1): 9-14.]

[2]
陈亚宁, 李玉朋, 李稚, 等. 全球气候变化对干旱区影响分析[J]. 地球科学进展, 2022, 37(2): 111-119.

[Chen Yaning, Li Yupeng, Li Zhi, et al. Analysis of the impact of global climate change on dryland areas[J]. Advances in Earth Science, 2022, 37(2): 111-119.]

[3]
Feng S, Fu Q. Expansion of global drylands under a warming climate[J]. Atmospheric Chemistry and Physics, 2013, 13(19): 10081-10094.

[4]
Kok J F, Adebiyi A A, Albani S, et al. Improved representation of the global dust cycle using observational constraints on dust properties and abundance[J]. Atmospheric Chemistry and Physics, 2021, 21(10): 8127-8167.

[5]
Uno I, Eguchi K, Yumimoto K, et al. Asian dust transported one full circuit around the globe[J]. Nature Geoscience, 2009, 2(8): 557- 560.

[6]
Újvári G, Klötzli U, Stevens T, et al. Greenland ice core record of last glacial dust sources and atmospheric circulation[J]. Journal of Geophysical Research: Atmospheres, 2022, 127(15): e2022JD036597.

[7]
Liu Q S, Roberts A P, Larrasoaña J C, et al. Environmental magnetism: principles and applications[J]. Reviews of Geophysics, 2012, 50(4): RG4002.

[8]
邓成龙, 刘青松, 潘永信, 等. 中国黄土环境磁学[J]. 第四纪研究, 2007, 27(2): 193-209.

[Deng Chenglong, Liu Qingsong, Pan Yongxin, et al. Environmental magnetism of Chinese Loess-Paleosol sequences[J]. Quaternary Sciences, 2007, 27(2): 193-209.]

[9]
Zan J B, Fang X M, Kang J, et al. Spatial and altitudinal variations in the magnetic properties of eolian deposits in the Northern Tibetan Plateau and its adjacent regions: Implications for delineating the climatic boundary[J]. Earth Science Reviews, 2020, 208: 103271.

[10]
Liu C Y, Nie J S, Li Z J, et al. Eccentricity forcing of East Asian monsoonal systems over the past 3 million years[J]. Proceedings of the National Academy of Sciences, 2021, 118(43): e2107055118.

[11]
谷永建, 李玉梅, 韩龙, 等. 中国东部表土磁化率与现代气候因子的关系及其环境意义[J]. 中国科学院大学学报, 2019, 36(4): 498-509.

[Gu Yongjian, Li Yumei, Han Long, et al. Relationships between surface soil magnetic susceptibility and modern climatic factors in Eastern China and their environmental significance[J]. Journal of University of Chinese Academy of Sciences, 2019, 36(4): 498-509.]

[12]
郭凤战, 迟云平, 谢远云, 等. 浑善达克沙地地表沉积物空间变化特征及其环境意义[J/OL]. 沉积学报, [2024-12-23]. http://www.cjxb.ac.cn/cn/article/doi/10.14027/j.issn.1000-0550.2024.070.

[Guo Fengzhan, Chi Yunpin, Xie Yuanyun, et al. The meridional variation characteristics of Iron-bearing minerals in surface sediments of Otindag Sandy Land and its environmental significance[J/OL]. Acta Sedimentologica Sinica, [2024-12-23]. http://www.cjxb.ac.cn/cn/article/doi/10.14027/j.issn.1000-0550.2024.070.]

[13]
王蜜娇, 迟云平, 谢远云, 等. 松嫩沙地地表沉积物气候代用指标变化特征及其气候意义[J]. 地质科学, 2024, 59(6): 1759-1774.

[Wang Mijiao, Chi Yunping, Xie Yuanyun, et al. Variation characteristics and climatic significance of climate proxy indexes of surface sediments in Songnen sandy land[J]. Chinese Journal of Geology, 2024, 59(6): 1759-1774.]

[14]
Long H, Lai Z P, Fuchs M, et al. Timing of Late Quaternary palaeolake evolution in Tengger Desert of Northern China and its possible forcing mechanisms[J]. Global and Planetary Change, 2012, 92: 119-129.

[15]
Zhang H Z, Lu H Y, Xu X S, et al. Quantitative estimation of the contribution of dust sources to Chinese Loess using detrital zircon U-Pb age patterns[J]. Journal of Geophysical Research: Earth Surface, 2016, 121(11): 2085-2099.

[16]
Jiang Q D, Li Z J, Hao Q Z. Modern sand supply of the Tengger Desert and temporal variations in sand provenance driven by Northern Hemisphere glaciation[J]. Catena, 2022, 214: 106278.

[17]
Sun Y B, Tada R, Chen J, et al. Distinguishing the sources of Asian dust based on electron spin resonance signal intensity and crystallinity of quartz[J]. Atmospheric Environment, 2007, 41(38): 8537-8548.

[18]
Hällberg L P, Stevens T, Almqvist B, et al. Magnetic susceptibility parameters as proxies for desert sediment provenance[J]. Aeolian Research, 2020, 46: 100615.

[19]
高尚玉, 陈渭南, 靳鹤龄, 等. 全新世中国季风区西北缘沙漠演化初步研究[J]. 中国科学(B辑), 1993, 23(2): 202-208.

[Gao Shangyu, Chen Weinan, Jin Heling, et al. Preliminary study on the evolution of deserts at the northwestern margin of the Chinese monsoon region during the Holocene[J]. Science in China (Series B), 1993, 23(2): 202-208.]

[20]
Chen F H, Chen J H, Huang W, et al. Westerlies Asia and monsoonal Asia: Spatiotemporal differences in climate change and possible mechanisms on decadal to sub-orbital timescales[J]. Earth Science Reviews, 2019, 192: 337-354.

[21]
杨小平, 刘东生. 距今30 ka前后我国西北沙漠地区古环境[J]. 第四纪研究, 2003, 23(1): 25-30.

[Yang Xiaoping, Liu Dongsheng. Palaeoenvironments in desert regions of Northwest China around 30 ka B. P.[J]. Quaternary Sciences, 2003, 23(1): 25-30.]

[22]
王萍, 王增光. 阿拉善活动块体的划分及归宿[J]. 地震, 1997, 17(1): 103-112.

[Wang Ping, Wang Zengguang. Division of the Alxa block and its attribution[J]. Earthquake, 1997, 17(1): 103-112.]

[23]
吴正. 中国沙漠及其治理[M]. 北京: 科学出版社, 2009.

[Wu Zheng. Sandy Deserts and Its Control in China[M]. Beijing: Science Press, 2009.]

[24]
Peng J, Wang X L, Yin G M, et al. Accumulation of aeolian sediments around the Tengger Desert during the Late Quaternary and its implications on interpreting chronostratigraphic records from drylands in North China[J]. Quaternary Science Reviews, 2022, 275: 107288.

[25]
李育, 张占森, 周雪如, 等. 石羊河流域晚冰期以来环境变化与人类活动[J]. 科学通报, 2023, 68(Z2): 3869-3884.

[Li Yu, Zhang Zhansen, Zhou Xueru, et al. Paleo-environmental changes and human activities in Shiyang River Basin since the Late Glacial[J]. Chinese Science Bulletin, 2023, 68(Z2): 3869-3884.]

[26]
Liu B, Zhao H, Yang F, et al. A new aeolian activity proxy based on analysis of the grain size characteristics of surface soils across the Tengger Desert, Northwest China, and its application to a Quaternary aeolian succession[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2023, 622: 111594.

[27]
Zhang K C, Qu J J, An Z S. Characteristics of wind-blown sand and near-surface wind regime in the Tengger Desert, China[J]. Aeolian Research, 2012, 6: 83-88.

[28]
李再军. 腾格里沙漠腹地钻孔揭示的沙漠形成与古环境演化历史[D]. 兰州: 兰州大学, 2013.

[Li Zaijun. Paleoenvironmental Evolution of the Tengger Desert from a Drill Core in Its Interior[D]. Lanzhou: Lanzhou University, 2013.]

[29]
王颖, 弋双文, 徐志伟, 等. 腾格里沙漠两万年以来典型沉积物钾长石和石英光释光测年对比研究[J]. 中国沙漠, 2023, 43(3): 69-85.

[Wang Ying, Yi Shuangwen, Xu Zhiwei, et al. Quartz OSL and K-feldspar PIRIR dating of typical sediments over the past 20000 years from the Tengger Desert, Northern China[J]. Journal of Desert Research, 2023, 43(3): 69-85.]

[30]
Li Z J, Sun D H, Chen F H, et al. Chronology and paleoenvironmental records of a drill core in the central Tengger Desert of China[J]. Quaternary Science Reviews, 2014, 85: 85-98.

[31]
刘青松, 邓成龙. 磁化率及其环境意义[J]. 地球物理学报, 2009, 52(4): 1041-1048.

[Liu Qingsong, Deng Chenglong. Magnetic susceptibility and its environmental significances[J]. Chinese Journal of Geophysics, 2009, 52(4): 1041-1048.]

[32]
彭守璋. 中国1 km分辨率逐月降水量数据集(1901—2023)[DB/OL]. 国家青藏高原数据中心, 2020.

[Peng Shouzhang. 1 km monthly precipitation dataset for China (1901-2023)[DB/OL]. National Tibetan Plateau/Third Pole Environment Data Center, 2020.]

[33]
吕厚远, 韩家懋, 吴乃琴, 等. 中国现代土壤磁化率分析及其古气候意义[J]. 中国科学(B辑), 1994, 24(12): 1290-1297.

[Lv Houyuan, Han Jiamao, Wu Naiqin, et al. Analysis of magnetic susceptibility of modern soils in China and its paleoclimate significance[J]. Science in China (Series B), 1994, 24(12): 1290-1297.]

[34]
Balsam W L, Ellwood B B, Ji J F, et al. Magnetic susceptibility as a proxy for rainfall: Worldwide data from tropical and temperate climate[J]. Quaternary Science Reviews, 2011, 30(19-20): 2732-2744.

[35]
Liu Z F, Liu Q, S Torrent J, et al. Testing the magnetic proxy χFD/HIRM for quantifying paleoprecipitation in modern soil profiles from Shaanxi Province, China[J]. Global and Planetary Change, 2013, 110: 368-378.

[36]
Song Y, Hao Q Z, Ge J Y, et al. Quantitative relationships between magnetic enhancement of modern soils and climatic variables over the Chinese Loess Plateau[J]. Quaternary International, 2014, 334: 119-131.

[37]
孙东怀, 周杰, 吴锡浩. 全新世气候适宜期黄土高原及黄土/沙漠过渡区年降水量的初步恢复[J]. 中国沙漠, 1995, 15(4): 339-344.

[Sun Donghuai, Zhou Jie, Wu Xihao. Preliminary reconstruction of annual rainfall in loess plateau and loess-desert transitional regions in suitable climatic period of Holocene[J]. Journal of Desert Research, 1995, 15(4): 339-344.]

[38]
宋扬, 郝青振, 葛俊逸, 等. 黄土高原表土磁化率与气候要素的定量关系研究[J]. 第四纪研究, 2012, 32(4): 679-689.

[Song Yang, Hao Qingzhen, Ge Junyi, et al. Quantitative relationships between modern soil magnetic susceptibility and climatic variables of the Chinese Loess Plateau[J]. Quaternary Sciences, 2012, 32(4): 679-689.]

[39]
Geiss C E, Zanner C W. Sediment magnetic signature of climate in modern loessic soils from the Great Plains[J]. Quaternary International, 2007, 162: 97-110.

[40]
Maher B A, Alekseev A, Alekseeva T. Variation of soil magnetism across the Russian steppe: Its significance for use of soil magnetism as a palaeorainfall proxy[J]. Quaternary Science Reviews, 2002, 21(14-15): 1571-1576.

[41]
Liu Q S, Torrent J, Maher B A, et al. Quantifying grain size distribution of pedogenic magnetic particles in Chinese Loess and its significance for pedogenesis[J]. Journal of Geophysical Research: Solid Earth, 2005, 110(B11): B11102.

[42]
Liu Q S, Jackson M J, Yu Y, et al. Grain size distribution of pedogenic magnetic particles in Chinese Loess/Paleosols[J]. Geophysical Research Letters, 2004, 31(22): L22603.

[43]
Dearing J A, Dann R J L, Hay K, et al. Frequency-dependent susceptibility measurements of environmental materials[J]. Geophysical Journal International, 1996, 124(1): 228-240.

[44]
Maher B A, Thompson R. Paleorainfall reconstructions from pedogenic magnetic susceptibility variations in the Chinese Loess and Paleosols[J]. Quaternary Research, 1995, 44(3): 383-391.

[45]
Long X Y, Ji J F, Balsam W L. Rainfall-dependent transformations of iron oxides in a tropical saprolite transect of Hainan Island, South China: Spectral and magnetic measurements[J]. Journal of Geophysical Research: Earth Surface, 2011, 116(F3): F03015.

[46]
胡鹏翔, 刘青松. 磁性矿物在成土过程中的生成转化机制及其气候意义[J]. 第四纪研究, 2014, 34(3): 458-473.

[Hu Pengxiang, Liu Qingsong. The production and transformation of magnetic minerals during pedogenesis and its paleoclimate significance[J]. Quaternary Sciences, 2014, 34(3): 458-473.]

[47]
Jiang Z X, Liu Q S, Roberts A P, et al. A new model for transformation of ferrihydrite to hematite in soils and sediments[J]. Geology, 2018, 46(11): 987-990.

[48]
Chen T H, Xu H F, Xie Q Q, et al. Characteristics and genesis of maghemite in Chinese Loess and Paleosols: Mechanism for magnetic susceptibility enhancement in paleosols[J]. Earth and Planetary Science Letters, 2005, 240(3-4): 790-802.

[49]
刘秀铭, 夏敦胜, 刘东生, 等. 中国黄土和阿拉斯加黄土磁化率气候记录的两种模式探讨[J]. 第四纪研究, 2007, 27(2): 210-220.

[Liu Xiuming, Xia Dunsheng Liu Dongsheng, et al. Discussion on two models of paleoclimatic records of magnetic susceptibility of Alaskan and Chinese loess[J]. Quaternary Sciences, 2007, 27(2): 210-220.]

[50]
Chlachula J, Evans M E, Rutter N W. A magnetic investigation of a Late Quaternary Loess/Palaeosol record in Siberia[J]. Geophysical Journal International, 1998, 132(1): 128-132.

[51]
Orgeira M J, Walther A M, Vásquez C A, et al. Mineral magnetic record of paleoclimate variation in Loess and Paleosol from the Buenos Aires formation (Buenos Aires, Argentina)[J]. Journal of South American Earth Sciences, 1998, 11(6): 561-570.

[52]
魏海涛, 夏敦胜, 陈发虎, 等. 黄土高原及相邻地区表土磁化率与降水量的关系[J]. 冰川冻土, 2008, 30(3): 433-439.

[Wei Haitao, Xia Dunsheng, Chen Fahu, et al. Relationship between the magnetic susceptibility of surface soil and precipitation of Loess Plateau and adjacent area[J]. Journal of Glaciology and Geocryology, 2008, 30(3): 433-439.]

[53]
李平原, 刘秀铭, 郭雪莲, 等. 西北戈壁沙漠-黄土高原区表土磁化率特征及其意义[J]. 第四纪研究, 2013, 33(2): 360-367.

[Li Pingyuan, Liu Xiuming, Guo Xuelian, et al. The magnetic susceptibility properties of top soil’s in Gobi-Loess Plateau, Northwest China[J]. Quaternary Sciences, 2013, 33(2): 360-367.]

[54]
张占森, 李育, 高铭君, 等. 祁连山及周边地区沉积物磁化率指示意义[J]. 兰州大学学报(自然科学版), 2023, 59(4): 489-499.

[Zhang Zhansen, Li Yu, Gao Mingjun, et al. Magnetic susceptibility indicators of sediments in the Qilian Mountains and the surrounding areas[J]. Journal of Lanzhou University (Natural Sciences), 2023, 59(4): 489-499.]

[55]
Thompson R, Oldfield F. Environmental Magnetism[M]. London: Allen and Unwin, 1986: 1-227.

[56]
Wei H T, Xia D S, Chen F H, et al. Magnetic characteristics of topsoil from Xinjiang, Northwestern China, and their implications[J]. Frontiers of Earth Science in China, 2009, 3: 259-265.

[57]
罗超, 郑妍, 郑洪波, 等. 长江流域悬浮物磁性特征及其物源指示意义[J]. 第四纪研究, 2013, 33(4): 684-696.

[Luo Chao, Zheng Yan, Zheng Hongbo, et al. Magnetic properties of suspended sediment in the Yangtze River and its provenance implications[J]. Quaternary Sciences, 2013, 33(4): 684-696.]

[58]
肖春凤, 孙启顺, 陈亮, 等. 南海西北部 16 kaBP 以来沉积物的环境磁学特征及其物源指示意义[J]. 海洋地质与第四纪地质, 2023, 43(1): 13-26.

[Xiao Chunfeng, Sun Qishun, Chen Liang, et al. Environmental magnetic characteristics and provenance significance of sediments in NW South China Sea since the past 16 ka[J]. Marine Geology and Quaternary Geology, 2023, 43(1): 13-26.]

[59]
昝金波, 方小敏, 聂军胜, 等. 塔里木盆地风积物表土磁学特征及其与物源物质、气候条件的关系[J]. 科学通报, 2011, 56(2): 153-160.

[Zan Jinbo, Fang Xiaomin, Nie Junsheng, et al. Magnetic characteristics of surface soils in aeolian deposits of the Tarim Basin and their relationship with provenance materials and climatic conditions[J]. Chinese Science Bulletin, 2011, 56(2): 153-160.]

[60]
Liu Q S, Sun Y B, Qiang X K, et al. Characterizing magnetic mineral assemblages of surface sediments from major Asian dust sources and implications for the Chinese Loess magnetism[J]. Earth, Planets and Space, 2015, 67: 1-17.

[61]
Stevens T, Carter A, Watson T P, et al. Genetic linkage between the Yellow River, the Mu Us Desert and the Chinese Loess Plateau[J]. Quaternary Science Reviews, 2013, 78: 355-368.

[62]
Bird A, Stevens T, Rittner M, et al. Quaternary dust source variation across the Chinese Loess Plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 435: 254-264.

[63]
Licht A, Dupont-Nivet G, Pullen A, et al. Resilience of the Asian atmospheric circulation shown by Paleogene dust provenance[J]. Nature Communications, 2016, 7(1): 12390.

[64]
Nie J S, Stevens T, Rittner M, et al. Loess plateau storage of Northeastern Tibetan Plateau-derived Yellow River sediment[J]. Nature Communications, 2015, 6(1): 8511.

[65]
Li M T, Nie J S, Li Z J, et al. A middle Pleistocene to Holocene perspective on sediment sources for the Tengger Desert, China[J]. Catena, 2023, 228: 107119.

[66]
张瀚之, 鹿化煜, 弋双文, 等. 中国北方沙漠/沙地锆石形态特征及其对物源的指示[J]. 第四纪研究, 2013, 33(2): 334-344.

[Zhang Hanzhi, Lu Huayu, Yi Shuangwen, et al. Zircon typological analyses of the major deserts/sand fields in Northern China and its implication for identifying sediment source[J]. Quaternary Sciences, 2013, 33(2): 334-344.]

[67]
Fan Y X, Li Z J, Wang F, et al. Provenance variations of the Tengger Desert since 2.35 Ma and its linkage with the Northern Tibetan Plateau: Evidence from U-Pb age spectra of detrital zircons[J]. Quaternary Science Reviews, 2019, 223: 105916.

[68]
Pullen A, Kapp P, McCallister A T, et al. Qaidam Basin and Northern Tibetan Plateau as dust sources for the Chinese Loess Plateau and paleoclimatic implications[J]. Geology, 2011, 39(11): 1031-1034.

[69]
李平原, 刘秀铭, 刘植, 等. 腾格里沙漠边缘表土磁学性质及其意义[J]. 第四纪研究, 2012, 32(4): 771-776.

[Li Pingyuan, Liu Xiuming, Liu Zhi, et al. The magnetic properties of topsoil from the edge of Tengger Desert, and its environmental significance[J]. Quaternary Sciences, 2012, 32(4): 771-776.]

[70]
李育, 王乃昂, 李卓仑, 等. 猪野泽中全新世干旱事件时空范围和机制[J]. 地理科学, 2012, 32(6): 731-738.

[Li Yu, Wang Nai’ang, Li Zhuolun, et al. The spatial and time scales for the dry Mid-Holocene event in Zhuye Lake[J]. Scientia Geographica Sinica, 2012, 32(6): 731-738.]

[71]
Wang Z, Wei J, Peng W, et al. Contents and spatial distribution patterns of heavy metals in the hinterland of the Tengger Desert, China[J]. Journal of Arid Land, 2022, 14(10): 1086-1098.

[72]
王友郡. 基于铁磁性矿物证据的中国黄土高原西部黄土物源解析[D]. 兰州: 兰州大学, 2019.

[Wang Youjun. Provenance Tracing of Loess in Western Chinese Loess Plateau Evidence from the Iron Mineralogy[D]. Lanzhou: Lanzhou University, 2019.]

[73]
杨仁超, 李进步, 樊爱萍, 等. 陆源沉积岩物源分析研究进展与发展趋势[J]. 沉积学报, 2013, 31(1): 99-107.

[Yang Renchao, Li Jinbu, Fan Aiping, et al. Research progress and development tendency of provenance analysis on terrigenous sedimentary rocks[J]. Acta Sedimentologica Sinica, 2013, 31(1): 99-107.]

[74]
王双, 王永红. 黄渤海表层沉积物环境磁学特征分类及物源诊断[J]. 第四纪研究, 2016, 36(1): 216-226.

[Wang Shuang, Wang Yonghong. Magnetic properties and provenance of surface sediments in the Bohai and Yellow Seas[J]. Quaternary Sciences, 2016, 36(1): 216-226.]

[75]
张国程. 天山山地表土磁性空间分异特征探究[D]. 杭州: 浙江师范大学, 2023.

[Zhang Guocheng. Study on Magnetic Differentiation of Topsoil in Tianshan Mountains[D]. Hangzhou: Zhejiang Normal University, 2023.]

[76]
刘东生, 安芷生, 袁宝印. 中国的黄土与风尘堆积[J]. 第四纪研究, 1985, 6(1): 113-125.

[Liu Dongsheng, An Zhisheng, Yuan Baoyin. Eolian process and dust mantle (Loess) in China[J]. Quaternary Sciences, 1985, 6(1): 113-125.]

[77]
Sun J M. Source regions and formation of the Loess sediments on the high mountain regions of Northwestern China[J]. Quaternary Research, 2002, 58(3): 341-351.

[78]
Liu C Q, Masuda A, Okada A, et al. Isotope geochemistry of Quaternary deposits from the arid lands in Northern China[J]. Earth and Planetary Science Letters, 1994, 127(1-4): 25-38.

[79]
Chen J, Li G J, Yang J D, et al. Nd and Sr isotopic characteristics of Chinese deserts: Implications for the provenances of Asian dust[J]. Geochimica et Cosmochimica Acta, 2007, 71(15): 3904-3914.

文章导航

/