ECMWF模式对昆仑山北坡夏季降水日变化特征的预报性能分析
|
杨柳(1982-),女,副高级工程师,主要从事数值预报检验及评估研究. E-mail: evans0831@sina.com |
收稿日期: 2024-08-23
修回日期: 2024-10-10
网络出版日期: 2025-08-13
基金资助
新疆“天山英才”培养计划(2023TSYCCX0077)
国家自然科学基金(42065001)
国家自然科学基金(2023年“新疆气象高层次骨干人才”计划)
Analysis of the forecast performance of the ECMWF Model for the diurnal variation characteristics of summer precipitation on the northern slope of the Kunlun Mountains
Received date: 2024-08-23
Revised date: 2024-10-10
Online published: 2025-08-13
昆仑山北坡地形复杂,降水日变化特征独特导致其降水精细化预报难度大,准确率低。ECMWF模式的整体预报性能世界领先,但其对昆仑山北坡复杂地形下降水日变化特征的预报能力尚不明确。本文利用2020—2023年夏季自动气象站降水观测资料,检验评估了ECMWF模式对昆仑山北坡不同区域夏季降水日变化特征的预报性能。结果表明:(1) 模式20:00起报的24 h累计降水预报性能优于08:00,模式对昆仑山北坡海拔大于2000 m区域的降水预报能力优于海拔小于2000 m的区域,模式对西昆仑山北坡降水的捕捉能力优于中昆仑山北坡。(2) 模式降水量与观测降水量的日变化特征差异在17:00至次日02:00最大,模式降水频次明显多于观测值,降水强度明显小于观测值,在观测降水较少(多)时段,模式降水易高(低)估;西(中)昆仑山北坡海拔>2000 m(≤2000 m)区域的模式降水量日变化特征与观测降水量的差异较大。(3) 模式降水在西昆仑山北坡以对流性降水预报为主,在中昆仑山北坡以大尺度降水预报为主;模式降水与观测降水日变化特征的误差主要来自对流性降水预报。研究成果可为提高昆仑山北坡夏季降水预报准确率和ECMWF模式降水预报产品订正提供参考。
杨柳 , 杨霞 , 刁鹏 , 胡德喜 , 王媛媛 . ECMWF模式对昆仑山北坡夏季降水日变化特征的预报性能分析[J]. 干旱区研究, 2025 , 42(1) : 27 -39 . DOI: 10.13866/j.azr.2025.01.03
The northern slope of the Kunlun Mountains has a complex terrain and unique diurnal variation of precipitation, which lead to low accuracy in refined precipitation forecasting. The ECMWF model has world-leading forecast performance, but its ability to predict the diurnal variation in precipitation in complex terrain is still unclear. This study used precipitation data from automatic meteorological stations during the summer of the 2020-2023 season to verify and evaluate the ECMWF model’s forecast performance for the diurnal variation of summer precipitation at various regions on the northern slope of the Kunlun Mountains. The results show the following. (1) The 24 h cumulative precipitation forecast performance of the ECMWF model initialized at 20:00 was better than that which initialized at 08:00; the model’s precipitation forecast capability for areas above 2000 m in altitude on the northern slope of the Kunlun Mountains was better than that for areas below 2000 m in altitude; the ECMWF model’s ability to capture precipitation in the Western Kunlun Mountains was superior to that in the Central Kunlun Mountains. (2) The ECMWF model’s forecasts of daily precipitation variations exhibited the greatest discrepancies from observed precipitation between 17:00 and 02:00 the following day. The model’s predicted frequency of precipitation events was much higher than the observed frequencies, but the predicted intensity of precipitation was markedly lower the observed. During periods of low observed precipitation, the model was prone to overestimating precipitation. In regions of the western (central) Kunlun Mountains, on the north-facing slopes with elevations above 2000 m (and up to 2000 m), the model’s daily variation in precipitation significantly diverged from that of the observed precipitation. (3) The ECMWF model’s precipitation forecasts were dominated by convective precipitation (CP) in the Western Kunlun Mountains and by large-scale precipitation (LSP) in the Central Kunlun Mountains. Within the ECMWF model, LSP had a better capturing ability for observed precipitation than CP, and the discrepancies between model precipitation forecasts and observed precipitation were more likely to come from CP. These findings provide a reference for improving the accuracy of summer precipitation forecasts on the northern slope of the Kunlun Mountains and for the correction of the ECMWF model’s precipitation forecasts.
表1 2020—2023年夏季昆仑山北坡ECMWF模式24 h累计降水预报检验结果Tab. 1 Verification results of 24-hour cumulative precipitation forecast using ECMWF model on the northern slope of Kunlun Mountains in the summer of 2020-2023 |
| 起报时间 | 区域 | 海拔 | COR | RE/% | RMSE/mm | TS | FAR | MR |
|---|---|---|---|---|---|---|---|---|
| 08:00 | 西昆仑 | 整体 | 0.21 | 109.90 | 3.57 | 0.30 | 0.68 | 0.19 |
| ≤1500 m | 0.26 | 36.40 | 2.69 | 0.25 | 0.71 | 0.35 | ||
| 1500~2000 m | 0.19 | 40.06 | 3.45 | 0.29 | 0.68 | 0.22 | ||
| 2000~3000 m | 0.14 | 131.65 | 4.87 | 0.37 | 0.62 | 0.08 | ||
| ≥3000 m | 0.23 | 305.14 | 4.47 | 0.31 | 0.69 | 0.03 | ||
| 中昆仑 | 整体 | 0.21 | 10.89 | 2.78 | 0.24 | 0.72 | 0.32 | |
| ≤1500 m | 0.11 | -1.19 | 2.24 | 0.16 | 0.81 | 0.49 | ||
| 1500~2000 m | 0.19 | 4.54 | 2.77 | 0.23 | 0.73 | 0.36 | ||
| 2000~3000 m | 0.25 | 16.68 | 3.75 | 0.32 | 0.65 | 0.20 | ||
| ≥3000 m | 0.22 | 25.09 | 4.09 | 0.36 | 0.62 | 0.11 | ||
| 20:00 | 西昆仑 | 整体 | 0.46 | 90.68 | 3.03 | 0.34 | 0.64 | 0.12 |
| ≤1500 m | 0.52 | 24.82 | 2.44 | 0.33 | 0.63 | 0.24 | ||
| 1500~2000 m | 0.49 | 26.19 | 2.74 | 0.36 | 0.62 | 0.13 | ||
| 2000~3000 m | 0.41 | 107.44 | 3.93 | 0.39 | 0.60 | 0.05 | ||
| ≥3000 m | 0.43 | 265.09 | 3.83 | 0.31 | 0.69 | 0.01 | ||
| 中昆仑 | 整体 | 0.60 | 3.29 | 2.16 | 0.33 | 0.65 | 0.17 | |
| ≤1500 m | 0.58 | -15.45 | 1.85 | 0.25 | 0.72 | 0.30 | ||
| 1500~2000 m | 0.62 | 0.08 | 2.14 | 0.34 | 0.64 | 0.17 | ||
| 2000~3000 m | 0.66 | 9.63 | 2.60 | 0.39 | 0.59 | 0.08 | ||
| ≥3000 m | 0.55 | 23.86 | 3.33 | 0.40 | 0.60 | 0.04 |
| [1] |
杨霞, 周鸿奎, 许婷婷, 等. 南疆夏季不同类型暴雨精细化特征对比分析[J]. 干旱区研究, 2021, 38(3): 747-756.
[
|
| [2] |
姚俊强, 李漠岩, 迪丽努尔·托列吾别克, 等. 不同时间尺度下新疆气候“暖湿化”特征[J]. 干旱区研究, 2022, 39(2): 333-346.
[
|
| [3] |
杨霞, 周鸿奎, 赵克明, 等. 1991—2018年新疆夏季小时极端强降水特征[J]. 高原气象, 2020, 39(4): 762-773.
[
|
| [4] |
张俊兰, 杨霞, 肖俊安, 等. 昆仑山北部夏季降水多尺度时空变化特征[J]. 高原山地气象研究, 2023, 43(3): 1-10.
[
|
| [5] |
韩兴胜. 中昆仑山北坡降水量变化特征分析[J]. 人民长江, 2017, 48(增刊): 85-88.
[
|
| [6] |
毛炜峄, 玉素甫·阿布都拉, 程鹏, 等. 1999年夏季中昆仑山北坡诸河冰雪大洪水及其成因分析[J]. 冰川冻土, 2007, 29(4): 553-558.
[
|
| [7] |
辛辰, 漆梁波. ECMWF模式对南方春雨期降水预报的检验和分析[J]. 暴雨灾害, 2018, 37(4): 383-391.
[
|
| [8] |
苏翔, 刘梅, 康志明, 等. 2020年江苏主汛期短期暴雨预报检验[J]. 气象, 2022, 48(3): 357-371.
[
|
| [9] |
陈晓燕, 孔祥伟, 彭筱, 等. 全球和区域数值模式在甘肃2020年汛期降水预报中的检验评估[J]. 干旱气象, 2022, 40(3): 524-535.
[
|
| [10] |
李智玉, 杜小玲, 朱育雷, 等. 贵州典型地形下强降水特征及其模式预报订正研究[J]. 暴雨灾害, 2024, 43(6): 648-656.
[
|
| [11] |
宇如聪, 李建, 陈昊明, 等. 中国大陆降水日变化研究进展[J]. 气象学报, 2014, 72(5): 948-968.
[
|
| [12] |
陈昊明, 李普曦, 赵妍. 千米尺度模式降水的检验评估进展及展望[J]. 气象科技进展, 2021, 11(3): 155-164.
[
|
| [13] |
陈春艳, 王建捷, 唐冶, 等. 新疆夏季降水日变化特征[J]. 应用气象学报, 2017, 28(1): 72-85.
[
|
| [14] |
郭玉琳, 赵勇, 周雅蔓, 等. 新疆天山山区夏季降水日变化特征及其与海拔高度关系[J]. 干旱区地理, 2022, 45(1): 57-65.
[
|
| [15] |
智协飞, 霍自强. 中国东南地区复杂地形下降水概率预报的订正研究[J]. 大气科学学报, 2023, 46(2): 230-241.
[
|
| [16] |
吕拉昌. 中国地理[M]. 北京: 科学出版社, 2016.
[
|
| [17] |
张家宝, 苏起元, 孙沈清, 等. 新疆短期天气预报指导手册[M]. 乌鲁木齐: 新疆人民出版社, 1986.
[
|
| [18] |
徐月月, 何清, 毛东雷, 等. 2022-2023年中昆仑山北坡不同海拔气象要素梯度对比分析[J]. 高原气象, 2025, 44(1): 224-239.
[
|
| [19] |
龙柯吉, 杨康权, 康岚. 多模式对四川盆地强降水过程的预报性能检验[J]. 干旱气象, 2024, 42(3): 473-483.
[
|
| [20] |
宫宇, 代刊, 徐珺, 等. GRAPES-GFS模式暴雨预报天气学检验特征[J]. 气象, 2018, 44(9): 1148-1159.
[
|
| [21] |
|
| [22] |
廖菲, 洪延超, 郑国光. 地形对降水的影响研究概述[J]. 气象科技, 2007, 35(3): 309-316.
[
|
| [23] |
钟水新. 地形对降水的影响机理及预报方法研究进展[J]. 高原气象, 2020, 39(5): 1122-1132.
[
|
/
| 〈 |
|
〉 |