基于改进S-W模型的南小河沟流域蒸散发分配及控制机制
杨楠(1997-),男,硕士研究生,主要从事水土保持、生态水文学研究. E-mail: 15379010323@163.com |
收稿日期: 2024-05-12
修回日期: 2024-06-26
网络出版日期: 2025-08-13
基金资助
甘肃省重点研发计划项目(22YF7FA081)
陕西省自然科学基础研究计划项目(2023-JC-ZD-30)
陕西省自然科学基础研究计划项目(2019JZ-45)
甘肃省水利科研与技术推广计划项目(24GSLK007)
甘肃省水利科研与技术推广计划项目(23GSLK012)
甘肃省水利科研与技术推广计划项目(23GSLK013)
Research on the distribution and control mechanism of evapotranspiration in the Nanxiaohegou watershed based on an improved S-W model
Received date: 2024-05-12
Revised date: 2024-06-26
Online published: 2025-08-13
精准量化蒸散发(ET)及组分并探明其控制因子,有利于合理评价及规划管理区域水资源。根据黄土高原水土保持治理典型小流域南小河沟流域2016—2020年连续性长期观测数据及野外试验,基于改进的S-W(Shuttleworth-Wallace)模型,模拟典型人工林地ET及组分动态变化,并利用结构方程模型(Structural Equation Modeling,SEM)分析植物蒸腾(T)、土壤蒸发(E)与控制因子间的耦合关系。结果表明:(1) 改进的S-W模型在南小河沟流域适用性较好,其中土壤表面抗阻力( )的阈值为50~2500 s·m-1,与土壤表层含水量(θ)经验函数类型为指数型,土壤颗粒中沙粒含量越大,线型斜率越大。(2) 典型人工林地ET范围为276.76~402.86 mm,多年平均T、E占ET的51.6%和48.4%,ET、T和E规律为各月间变化不明显,但日间波动剧烈,T和E波动趋势基本一致,与年降雨量变化一致,和次降雨表现滞后性。(3) SEM分析净辐射(Rn)、气温(Ta)、θ对ET影响最为显著,其中Rn对T影响最大(总影响为0.614),Ta对E影响最大(总影响为0.426);T对E体现为正相关,贡献系数达0.503。基于改进的S-W模型对ET进行评价及组分分离,为深刻揭示干旱半干旱区生态水文过程提供依据。
杨楠 , 宋孝玉 , 邓建伟 , 李蓝君 , 赵新凯 , 孟鹏飞 , 符冲 , 魏婉茵 , 张育斌 , 丁林 , 李浩霖 . 基于改进S-W模型的南小河沟流域蒸散发分配及控制机制[J]. 干旱区研究, 2024 , 41(11) : 1819 -1830 . DOI: 10.13866/j.azr.2024.11.03
In this study, we aimed to accurately quantify evapotranspiration (ET) and its components while exploring the factors that control it, which will facilitate the practical evaluation, planning, and management of regional water resources. Utilizing continuous long-term observation data and field tests conducted from 2016 to 2020 in the Nanxiaohegou watershed—a typical small watershed for water and soil conservation on the Loess Plateau—this study simulated the dynamic changes of ET and its components in typical plantation land using the improved Shuttleworth-Wallace (S-W) model. Additionally, we analyzed the coupling relationships between plant transpiration (T), soil evaporation (E), and control factors using a structural equation model. The results revealed the following: (1) The modified S-W model was effective for evaluating ET and its components in Nanxiaohe Valley. The threshold value of soil surface resistance ( ) was 50-2500 s·m-1, exhibiting an exponential relationship with the empirical function of soil surface water content (θ); moreover, higher sand content in the soil particles correlated with a steeper linear slope. (2) ET ranged from 276.76 mm to 402.86 mm in typical plantation land, with annual averages of T and E accounting for 51.6% and 48.4% of ET, respectively. While monthly ET, T, and E patterns were not pronounced, daily fluctuations were significant. The fluctuation trends of T and E largely reflected annual precipitation patterns but lagged behind rainfall. (3) Structural equation modeling analysis revealed that net radiation (Rn), temperature (Ta), and θ exerted the most significant effects on ET, with Rn having the largest impact on T (total impact of 0.614) and Ta having the most significant impact on E (total impact of 0.426). T was positively correlated with E, with a contribution coefficient of 0.503. Evaluating ET and its components using an improved S-W model establishes a foundation for a deeper understanding of ecological and hydrological processes in arid and semiarid regions.
表1 试验样地基本情况Tab. 1 Basic information of the test site |
树种 | 树高/cm | 胸径/cm | 冠幅/cm | 土质 | 地形 | 坡位 | 坡度/(°) |
---|---|---|---|---|---|---|---|
刺槐 | 564.11±29.60 | 15.91±2.42 | 293.11±15.20 | 砂壤土 | 阶地 | 中 | 26 |
侧柏 | 499.43±27.91 | 17.44±3.73 | 211.42±11.63 | 砂壤土 | 阶地 | 中 | 22 |
油松 | 446.21±24.23 | 15.41±1.90 | 191.60±12.31 | 砂壤土 | 阶地 | 中 | 21 |
表2 控制因子间标准化系数及显著性Tab. 2 Standardization coefficients and significance among control factors |
初始模型参数估计 | 修正模型参数估计 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
变量 | 关系 | 变量 | Std | S.E. | C.R. | P | 变量 | 关系 | 变量 | Std | S.E. | C.R. | P |
T | ← | u | -0.218 | 0.042 | -9.378 | *** | T | ← | u | -0.219 | 0.042 | -9.378 | *** |
T | ← | Ta | 0.588 | 0.003 | 25.195 | *** | T | ← | Ta | 0.591 | 0.003 | 25.195 | *** |
T | ← | θ | 0.513 | 1.286 | 20.429 | *** | T | ← | θ | 0.517 | 1.286 | 20.429 | *** |
T | ← | LAI | 0.205 | 0.015 | 8.831 | *** | T | ← | LAI | 0.206 | 0.015 | 8.831 | *** |
T | ← | Rn | 0.609 | 0.000 | 24.78 | *** | T | ← | Rn | 0.614 | 0.000 | 24.78 | *** |
T | ← | D | 0.064 | 0.024 | 2.952 | 0.003 | T | ← | D | 0.064 | 0.024 | 2.952 | 0.003 |
E | ← | θ | -0.057 | 1.132 | -1.249 | 0.212 | E | ← | T | 0.514 | 0.018 | 13.77 | *** |
E | ← | Ta | 0.098 | 0.003 | 2.104 | 0.035 | E | ← | D | 0.083 | 0.017 | 2.669 | 0.008 |
E | ← | LAI | -0.037 | 0.011 | -1.044 | 0.297 | E | ← | Ta | 0.110 | 0.003 | 2.784 | 0.005 |
E | ← | T | 0.535 | 0.027 | 9.758 | *** | Ta | ↔ | D | 0.130 | 0.087 | 3.629 | *** |
E | ← | D | 0.084 | 0.017 | 2.697 | 0.007 | Ta | ↔ | Rn | 0.181 | 7.113 | 4.687 | *** |
E | ← | u | 0.005 | 0.031 | 0.146 | 0.884 | u | ↔ | Rn | 0.334 | 0.553 | 8.502 | *** |
E | ← | Rn | -0.008 | 0.000 | -0.161 | 0.872 | u | ↔ | θ | -0.146 | 0.000 | -4.02 | *** |
θ | ↔ | LAI | -0.346 | 0.000 | -8.522 | *** | u | ↔ | Ta | 0.231 | 0.058 | 5.96 | *** |
θ | ↔ | D | -0.013 | 0.000 | -0.336 | 0.737 | θ | ↔ | LAI | -0.351 | 0.000 | -8.711 | *** |
θ | ↔ | Ta | -0.33 | 0.002 | -8.181 | *** | θ | ↔ | Ta | -0.332 | 0.002 | -8.279 | *** |
θ | ↔ | u | -0.133 | 0.000 | -3.431 | *** | θ | ↔ | Rn | -0.387 | 0.020 | -9.448 | *** |
θ | ↔ | Rn | -0.383 | 0.020 | -9.317 | *** | LAI | ↔ | Ta | 0.137 | 0.158 | 3.644 | *** |
LAI | ↔ | D | 0.081 | 0.020 | 2.114 | 0.035 | LAI | ↔ | Rn | 0.248 | 1.466 | 6.626 | *** |
LAI | ↔ | Ta | 0.138 | 0.163 | 3.573 | *** | |||||||
LAI | ↔ | Rn | 0.235 | 1.539 | 5.976 | *** | |||||||
u | ↔ | LAI | -0.039 | 0.012 | -1.022 | 0.307 | |||||||
u | ↔ | D | -0.036 | 0.007 | -0.946 | 0.344 | |||||||
u | ↔ | Ta | 0.221 | 0.059 | 5.627 | *** | |||||||
u | ↔ | Rn | 0.326 | 0.566 | 8.076 | *** | |||||||
D | ↔ | Ta | 0.13 | 0.093 | 3.369 | *** | |||||||
D | ↔ | Rn | 0.028 | 0.859 | 0.739 | 0.460 | |||||||
Ta | ↔ | Rn | 0.182 | 7.144 | 4.658 | *** |
注:Std为标准化系数;S.E.为标准误差;C.R.为临界比;P为显著性水平;***为P<0.001,相关性显著;当P>0.001,显示具体数值;←为自变量指向因变量;↔为主因子之间相互关系;LAI为叶面积指数;θ为土壤表层含水量;u为参照高度风速;D为饱和水汽压差;Ta为气温;Rn为净辐射。 |
表3 SEM模型适配度检验Tab. 3 SEM model fit test |
检验统计量 | 参数 | 判别标准 | 分析结果 | |
---|---|---|---|---|
原则 | 依据 | |||
绝对拟合指标 | 卡方自由度比值(χ2:df) | 1<(χ2:df)<3 | 越接近1越好 | 1.026 |
绝对拟合指数(GFI) | 0.9<GFI<1 | 越接近1越好 | 0.997 | |
近似误差均方根(RMSEA) | 0<RMSEA | 越低越好 | 0.006 | |
相对拟合指标 | 比较适配指数(CFI) | 0.9<CFI<1 | 越接近1越好 | 0.999 |
规准适配指数(NFI) | 0.9<NFI<1 | 越接近1越好 | 0.994 |
表4 控制因子对植物蒸腾和土壤蒸发影响系数Tab. 4 Influence coefficients of control factors on plant transpiration and soil water evaporation |
饱和水汽压差 | 净辐射 | 气温 | 叶面积指数 | 土壤表层含水量 | 参照高度风速 | 植物蒸腾 | |||
---|---|---|---|---|---|---|---|---|---|
总影响 | 植物蒸腾 | 0.064 | 0.614 | 0.591 | 0.206 | 0.517 | -0.219 | - | |
土壤蒸发 | 0.116 | 0.309 | 0.426 | 0.104 | 0.260 | -0.110 | 0.503 | ||
直接影响 | 植物蒸腾 | 0.064 | 0.614 | 0.591 | 0.206 | 0.517 | -0.219 | - | |
土壤蒸发 | 0.083 | - | 0.128 | - | - | - | 0.503 | ||
间接影响 | 植物蒸腾 | - | - | - | - | - | - | - | |
土壤蒸发 | 0.032 | 0.309 | 0.298 | 0.104 | 0.260 | -0.110 | - |
注:“-”表示几乎无影响。 |
[1] |
康利刚, 曹生奎, 曹广超, 等. 青海湖沙柳河流域蒸散发时空变化特征[J]. 干旱区研究, 2023, 40(3): 358-372.
[
|
[2] |
李蓝君, 宋孝玉, 夏露, 等. 黄土高原沟壑区典型造林树种蒸散发对气候变化的响应[J]. 农业工程学报, 2018, 34(20): 148-159.
[
|
[3] |
庄淏然, 冯克鹏, 许德浩. 蒸散分离的玉米水分利用效率变化及影响因素[J]. 干旱区研究, 2023, 40(7): 1117-1130.
[
|
[4] |
|
[5] |
|
[6] |
卢宝宝, 孙慧兰, 姜泉泉, 等. 近53 a新疆水分盈亏量时空变化特征[J]. 干旱区研究, 2021, 38(6): 1579-1589.
[
|
[7] |
段利民, 童新, 吕扬, 等. 固沙植被黄柳、小叶锦鸡儿蒸腾耗水尺度提升研究[J]. 自然资源学报, 2018, 33(1): 52-62.
[
|
[8] |
王宇, 周莉, 贾庆宇, 等. 基于Shuttleworth-Wallace模型的水稻蒸散组分模拟及其特征分析[J]. 中国农业气象, 2017, 38(11): 709-719.
[
|
[9] |
包永志, 刘廷玺, 段利民, 等. 基于Shuttleworth-Wallace模型的科尔沁沙地流动半流动沙丘蒸散发模拟[J]. 应用生态学报, 2019, 30(3): 867-876.
[
|
[10] |
|
[11] |
|
[12] |
李艳, 刘海军, 黄冠华. 麦秸覆盖条件下土壤蒸发阻力及蒸发模拟[J]. 农业工程学报, 2015, 31(1): 98-106.
[
|
[13] |
刘春伟, 曾勰婷, 邱让建. 用分时段修正双源模型估算南京地区冬小麦生育期蒸散量[J]. 农业工程学报, 2016, 32(增刊): 80-87.
[
|
[14] |
胡广录, 刘鹏, 李嘉楠, 等. 黑河中游绿洲边缘三种景观类型土壤水分动态特征及影响因素[J]. 干旱区研究, 2024, 41(4): 550-565.
[
|
[15] |
赵丽雯, 赵文智, 吉喜斌. 西北黑河中游荒漠绿洲农田作物蒸腾与土壤蒸发区分及作物耗水规律[J]. 生态学报, 2015, 35(4): 1114-1123.
[
|
[16] |
姚佳, 陈启慧, 李琼芳, 等. 伊犁河—巴尔喀什湖流域实际蒸散发时空变化特征及其环境影响因子[J]. 干旱区研究, 2022, 39(5): 1564-1575.
[
|
[17] |
魏宁宁, 母艳梅, 姜晓燕, 等. 毛乌素沙地油蒿-杨柴灌丛生态系统蒸散组分分配及其影响因子[J]. 应用生态学报, 2021, 32(7): 2407-2414.
[
|
[18] |
雷菲亚, 李小双, 陶冶, 等. 西北干旱区藓类结皮覆盖下土壤多功能性特征及影响因子[J]. 干旱区研究, 2024, 41(5): 812-820.
[
|
[19] |
|
[20] |
周静, 孙永峰, 丁杰萍, 等. 退化沙质草地恢复过程中植被生物量变化及其与土壤碳的关系[J]. 干旱区研究, 2023, 40(9): 1457-1464.
[
|
[21] |
|
[22] |
崔建国. 黄土半干旱区林木水分生理特性与土壤水分关系研究[D]. 北京: 北京林业大学, 2012.
[
|
[23] |
|
[24] |
乔英, 马英杰, 辛明亮. 基于改进S-W与结构方程模型的干旱区枣园蒸散特征分析[J]. 农业机械学报, 2021, 52(8): 307-317.
[
|
[25] |
|
[26] |
|
[27] |
张瑞文, 赵成义, 王丹丹, 等. 极端干旱区不同水分条件下胡杨林生态耗水特征[J]. 水土保持学报, 2019, 33(4): 270-278.
[
|
[28] |
|
[29] |
|
[30] |
|
[31] |
刘国水, 刘钰, 蔡甲冰, 等. 农田不同尺度蒸散量的尺度效应与气象因子的关系[J]. 水利学报, 2011, 42(3): 284-289.
[
|
[32] |
吴友杰, 杜太生. 西北干旱区农田土壤蒸发量及影响因子分析[J]. 农业工程学报, 2020, 36(12): 110-116.
[
|
[33] |
刘丽霞, 王辉, 孙栋元, 等. 绿洲农田防护林系统土壤蒸发特征研究[J]. 干旱区资源与环境, 2008, 11(1): 162-166.
[
|
[34] |
|
[35] |
杨文静, 赵建世, 赵勇, 等. 基于结构方程模型的蒸散发归因分析[J]. 清华大学学报, 2022, 62(3): 581-588.
[
|
/
〈 |
|
〉 |