基于无人机高光谱影像的冬小麦叶片氮浓度遥感估测
孙法福(1997-),男,硕士研究生,主要从事农业遥感相关研究. E-mail: 18253289263@163.com |
收稿日期: 2023-12-01
修回日期: 2024-04-20
网络出版日期: 2025-08-12
基金资助
农业科技创新稳定支持专项(xjnkywdzc-2023002)
农业科技创新稳定支持专项(xjnkywdzc-2023007-3)
新疆小麦产业技术体系(XJARS-01)
新疆维吾尔自治区重大专项(2022A02011-2)
Estimation of nitrogen contentration in winter wheat leaves based on hyperspectral images of UAV
Received date: 2023-12-01
Revised date: 2024-04-20
Online published: 2025-08-12
叶片氮浓度(LNC)是反应作物光合作用、营养状况和长势的重要指标,为精准高效地估测不同生育期冬小麦叶片氮浓度,以新冬22为研究对象,利用无人机搭载Pika L高光谱相机获取4个关键生育期冬小麦冠层反射率数据。基于波段优化算法和相关性分析筛选LNC敏感光谱指数,结合逐步回归、多元线性回归和偏最小二乘回归建立关键生育期冬小麦叶片氮浓度估测模型,并与单变量估测模型进行比较。结果表明:基于波段优化算法筛选的组合光谱指数与LNC的相关性优于传统植被指数,且达到极显著性相关;在单变量LNC估测模型中,组合光谱指数构建的模型精度优于传统植被指数,其中,扬花期差值光谱指数(DSI(R940、R968))建立的估测模型最好,R2为0.789;多变量估测模型精度均优于单变量估测模型,其中,基于偏最小二乘回归构建的LNC估算模型最好,孕穗期和扬花期拟合效果较优,模型决定系数均为0.923,均方根误差为0.082、0.084。本研究结果可以作为冬小麦LNC估测和长势监测的科学依据。
孙法福 , 赖宁 , 耿庆龙 , 李永福 , 吕彩霞 , 信会男 , 李娜 , 陈署晃 . 基于无人机高光谱影像的冬小麦叶片氮浓度遥感估测[J]. 干旱区研究, 2024 , 41(6) : 1069 -1078 . DOI: 10.13866/j.azr.2024.06.15
Established leaf nitrogen concentration (LNC) is the response of crop photosynthesis, an important index of nutrition and growth. To accurately and efficiently estimate different growth period of winter wheat LNC, with the new winter 22 as the research object, using the (UAVs) Pika L hyperspectral cameras for four key growth period of winter wheat canopy reflectance data. The LNC-sensitive spectral index was screened based on the band optimization algorithm and correlation analysis. Stepwise regression, multiple linear regression, and partial least squares regression were combined to establish the estimation model of winter wheat LNC in each key growth stage, which was compared with the single variable estimation model. The results showed that (1) the correlation between the combined spectral index screened using the band optimization algorithm and LNC was stronger than that obtained using the traditional vegetation index and was extremely significant; (2) the combined spectral index in the single variable LNC estimation model allowed to obtain a more accurate model compared with the traditional vegetation index, including Yang flowering DSI(R940, R968) estimate model is set up, best R2 of 0.789. The multi-variable estimation models were more accurate than the single variable estimation models and, among them, the LNC estimation model based on partial least squares regression was the best, and the fitting effect of the booting and flowering stages was better. This model had a coefficient of determination of 0.923 and root-mean-square errors of 0.082 and 0.084. The results of this study provide a theoretical basis and technical support to estimate the LNC of winter wheat and monitor its growth.
表2 Pika L高光谱成像仪主要参数Tab. 2 Main parameters of Pika L hyperspectral imager |
参数 | 数值 |
---|---|
光谱范围 | 400~1000 nm |
采样间隔 | 2.1 nm |
光谱通道 | 281 bands |
空间通道数 | 900个 |
光谱分辨率 | 2.1 nm |
尺寸 | 11.5 cm×10.4 cm×6.6 cm |
表3 光谱指数及其定义Tab. 3 Spectral indices and defintions |
光谱指数类型 | 光谱特征指数 | 定义 | 文献 |
---|---|---|---|
任意两波段光谱指数 | DSI(差值光谱指数) | Ri-Rj | 本研究 |
RSI(比值光谱指数) | Ri/Rj | 本研究 | |
NDSI(归一化光谱指数) | (Ri-Rj)/(Ri+Rj) | 本研究 | |
植被指数 | SR(简单比值指数) | R750/R706 | [21] |
NDRE(红边归一化光谱指数) | (R790-R720)/(R790+R720) | [11] | |
MTCI(陆地叶绿素指数) | (R750-R710)/(R710-R680) | [22] | |
NDVI(归一化植被指数) | (R780-R670)/(R780+R670) | [23] | |
GNDVI(绿色归一化植被指数) | (R750-R550)/(R750+R550) | [22] | |
RNDRE(红边归一化植被指数) | (R750-R705)/(R750+R706) | [15] | |
VOG(红边指数) | R742/R722 | [23] | |
CIred-edge(红光叶绿素光谱指数) | (R780/R710)-1 | [12] | |
CIgreen(绿光叶绿素光谱指数) | (R780/R550)-1 | [15] | |
RVI(比值植被指数) | R790/R670 | [8] |
注:Ri和Rj表示任意两波段的反射率;i和j表示在波段400~1000 nm范围内的任意波段位置。 |
图3 不同生育期内任意两波段三类光谱指数与LNC相关性等势图Fig. 3 Correlation isospheric map between the three kinds of spectral indices and the LNC in any two bands during different growing periods |
表4 光谱指数入选波段与叶片氮浓度的相关性Tab. 4 Correlation of spectral index entry bands with leaf nitrogen concentrations |
生育时期 | 光谱指数 | 相关系数 |
---|---|---|
拔节期 | DSI(R644、R688) | -0.864** |
RSI(R596、R692) | 0.836** | |
NDSI(R596、R692) | -0.837** | |
孕穗期 | DSI(R826、R790) | 0.858** |
RSI(R632、R620) | 0.863** | |
NDSI(R620、R632) | 0.863** | |
扬花期 | DSI(R940、R968) | 0.877** |
RSI(R494、R514) | 0.870** | |
NDSI(R514、R494) | 0.869** | |
灌浆期 | DSI(R914、R912) | 0.811** |
RSI(R444、R520) | 0.808** | |
NDSI(R444、R520) | -0.810 ** |
注:**表示在P<0.01显著;*表示在 P<0.05显著。下同。 |
表5 不同生育时期单个光谱参数的小麦叶片氮浓度(LNC)估测模型Tab. 5 LNC estimation model of wheat with a single spectral parameters at different growth stages |
光谱 指数 | 线性函数 | 二次函数 | 指数函数 | 幂函数 | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A | B | C | D | A | B | C | D | A | B | C | D | A | B | C | D | ||||
SR | 0.530* | 0.538* | 0.549* | 0.476* | 0.531* | 0.636** | 0.567* | 0.578* | 0.523* | 0.548* | 0.581* | 0.546* | 0.519* | 0.508* | 0.598** | 0.616** | |||
NDRE | 0.504* | 0.560* | 0.585* | 0.533* | 0.509* | 0.650** | 0.585* | 0.575* | 0.504* | 0.572* | 0.613** | 0.622* | 0.483* | 0.537* | 0.604** | 0.660** | |||
MTCI | 0.541* | 0.553* | 0.583* | 0.507* | 0.543* | 0.583* | 0.592* | 0.595* | 0.538* | 0.570* | 0.605** | 0.579* | 0.520* | 0.538* | 0.619** | 0.656** | |||
NDVI | 0.476* | 0.360 | 0.476* | 0.356 | 0.507* | 0.571* | 0.492* | 0.429* | 0.478* | 0.362 | 0.525* | 0.401* | 0.457* | 0.353 | 0.521* | 0.423* | |||
GNDVI | 0.490* | 0.439* | 0.521* | 0.240 | 0.511* | 0.633** | 0.541* | 0.273 | 0.491* | 0.446* | 0.567* | 0.269 | 0.473* | 0.429* | 0.555* | 0.278 | |||
RNDRE | 0.510* | 0.468* | 0.556* | 0.549* | 0.529* | 0.633** | 0.562* | 0.572* | 0.511* | 0.479* | 0.597** | 0.643* | 0.484* | 0.453* | 0.586* | 0.665** | |||
VOG | 0.515* | 0.556* | 0.577* | 0.505* | 0.517* | 0.656** | 0.580* | 0.578* | 0.513* | 0.568* | 0.608* | 0.586* | 0.510* | 0.548* | 0.612** | 0.617** | |||
CIred-edge | 0.524* | 0.569* | 0.564* | 0.470* | 0.524* | 0.631** | 0.581* | 0.580* | 0.517* | 0.578* | 0.589* | 0.539* | 0.501* | 0.524* | 0.606** | 0.639** | |||
CIgreen | 0.506* | 0.561* | 0.530* | 0.429* | 0.506* | 0.652** | 0.564* | 0.560* | 0.499* | 0.563* | 0.562* | 0.491* | 0.491* | 0.503* | 0.584* | 0.587* | |||
RVI | 0.511* | 0.507* | 0.454* | 0.407* | 0.511* | 0.644** | 0.520* | 0.535* | 0.494* | 0.504* | 0.501* | 0.477* | 0.502* | 0.429* | 0.531* | 0.575* | |||
DSI | 0.747** | 0.737** | 0.769** | 0.657** | 0.752** | 0.739** | 0.770** | 0.705** | 0.777** | 0.701** | 0.757** | 0.652** | 0.777** | 0.689** | 0.789** | 0.736** | |||
RSI | 0.699** | 0.743** | 0.757** | 0.652** | 0.700** | 0.781** | 0.759** | 0.671** | 0.704** | 0.746** | 0.756** | 0.697** | 0.706** | 0.747** | 0.757** | 0.708** | |||
NDSI | 0.700** | 0.744** | 0.756** | 0.657** | 0.701** | 0.781** | 0.759** | 0.672** | 0.706** | 0.747** | 0.757** | 0.705** | 0.668** | 0.702** | 0.750** | 0.686** |
注:A表示拔节期,B表示孕穗期,C表示扬花期,D表示灌浆期。 |
表6 不同生育时期多个光谱参数的小麦叶片氮浓度(LNC)估测模型Tab. 6 LNC estimation model of wheat with multiple spectral parameters at different growth stages |
生育期 | 模型类型 | 模型表达式 | R2 | RMSE | |
---|---|---|---|---|---|
拔节期 | 逐步回归 | y=4.941+328.631×DSI | 0.785** | 0.152 | |
多元线性回归 | y=5.237+1.643×SR-7.167×NDRE-0.371×MTCI-0.69×VOG+2.107×CIred-edge-1.298×CIgreen+416×DSI-12.857×NDSI | 0.810** | 0.148 | ||
偏最小二乘回归 | y=-439.214+2.537×SR-0.644×CIgreen-847.763×NDSI-4.84×NDRE-0.166×MTCI+534.02×DSI+441.385×RSI-1.491×CIred-edge+2.067×VOG | 0.827** | 0.125 | ||
孕穗期 | 逐步回归 | y=121.58×DSI+64.851×NDSI+0.676 | 0.886** | 0.146 | |
多元线性回归 | y=-25.266-3.528×SR-63.571×NDRE-0.808×MTCI+35.126×VOG+2.556×CIred-edge-0.299×CIgreen+120.277×DSI+69.302×NDSI | 0.915** | 0.088 | ||
偏最小二乘回归 | y=1989.584-3.786×SR-67.171×NDRE-1.078×MTCI+36.272×VOG+3.021×CIred-edge-0.287×CIgreen+135.439×DSI-2015.69×RSI-3856.162×NDSI | 0.923** | 0.082 | ||
扬花期 | 逐步回归 | y=-8.102+26.947×DSI+13.905×RSI-4.374×NDRE | 0.899** | 0.106 | |
多元线性回归 | y=-10.266+0.444×RS-5.814×NDRE-0.276×MTCI-0.45×CIred-edge+0.228×CIgreen-0.848×VOG+17.924×RSI+29.493×DSI | 0.916** | 0.086 | ||
偏最小二乘回归 | y=-20.042+0.476×SR-5.603×NDRE-0.309×MTCI-0.47×CIred-edge+0.226×CIgreen-0.814×VOG+15.656×NDSI+27.821×RSI+29.548×DSI | 0.923** | 0.084 | ||
灌浆期 | 逐步回归 | y=3.344+247.593×DSI-7.417×NDSI | 0.753** | 0.212 | |
多元线性回归 | y=-19.407+1.844×SR-35.582×NDRE+3.161×MTCI+22.083×VOG-5.733×CIred-edge-0.529×CIgreen+406.249×DSI-2.746×RSI-3.227×NDSI | 0.815** | 0.126 | ||
偏最小二乘回归 | y=1.952+1.646×SR-2.536×NDRE+2.848×MTCI+3.772×VOG-4.888×CIred-edge-0.74×CIgreen+0.327×DSI+0.565×RSI+0.591×NDSI | 0.862** | 0.125 |
[1] |
|
[2] |
郭建华, 赵春江, 王秀, 等. 作物氮素营养诊断方法的研究现状及进展[J]. 中国土壤与肥料, 2008(4): 10-14.
[
|
[3] |
郭发旭, 冯全, 杨森, 等. 基于无人机高光谱的马铃薯冠层叶片全氮含量反演[J]. 浙江农业学报, 2023, 35(8): 1904-1914.
[
|
[4] |
易翔, 吕新, 张立福, 等. 基于RF和SPA的无人机高光谱估算棉花叶片全氮含量[J]. 作物杂志, 2023(2): 245-252.
[
|
[5] |
邹德秋, 王家强, 张冬冬, 等. 基于光谱指数的胡杨叶片氮含量估算[J]. 森林与环境学报, 2022, 42(6): 623-630.
[
|
[6] |
|
[7] |
冯伟, 朱艳, 姚霞, 等. 基于高光谱遥感的小麦叶干重和叶面积指数监测[J]. 植物生态学报, 2009, 33(1): 34-44.
[
|
[8] |
魏鹏飞, 徐新刚, 李中元, 等. 基于无人机多光谱影像的夏玉米叶片氮含量遥感估测[J]. 农业工程学报, 2019, 35(8): 126-133.
[
|
[9] |
康恺, 张伟, 贺燕, 等. 大豆冠层叶片氮含量检测研究—基于无人机多光谱图像[J]. 农机化研究, 2024, 46(2): 151-156.
[
|
[10] |
杨欣, 袁自然, 叶寅, 等. 基于无人机高光谱遥感的冬小麦全氮含量反演[J]. 光谱学与光谱分析, 2022, 42(10): 3269-3274.
[
|
[11] |
宋晓, 许端阳, 黄绍敏, 等. 基于地面观测光谱数据的冬小麦冠层叶片氮含量反演模型[J]. 应用生态学报, 2020, 31(5): 1636-1644.
[
|
[12] |
李丹, 李斐, 胡云才, 等. 基于光谱指数波段优化算法的小麦玉米冠层含氮量估测[J]. 光谱学与光谱分析, 2016, 36(4): 1150-1157.
[
|
[13] |
秦占飞, 常庆瑞, 谢宝妮, 等. 基于无人机高光谱影像的引黄灌区水稻叶片全氮含量估测[J]. 农业工程学报, 2016, 32(23): 77-85.
[
|
[14] |
常潇月, 常庆瑞, 王晓凡, 等. 基于无人机高光谱影像玉米叶绿素含量估算[J]. 干旱地区农业研究, 2019, 37(1): 66-73.
[
|
[15] |
尹航, 李斐, 杨海波, 等. 基于无人机高光谱影像的马铃薯叶绿素含量估测[J]. 植物营养与肥料学报, 2021, 27(12): 2184-2195.
[
|
[16] |
|
[17] |
付波霖, 邓良超, 张丽, 等. 联合星载高光谱影像和堆栈集成学习回归算法的红树林冠层叶绿素含量遥感反演[J]. 遥感学报, 2022, 26(6): 1182-1205.
[
|
[18] |
|
[19] |
李玉霞, 杨武年, 童玲, 等. 基于光谱指数法的植被含水量遥感定量监测及分析[J]. 光学学报, 2009, 29(5): 1404-1405.
[
|
[20] |
左璐, 王焕炯, 刘荣高, 等. 基于不同光谱指数的植被物候期遥感监测差异[J]. 应用生态学报, 2018, 29(2): 599-603.
[
|
[21] |
|
[22] |
赖佳政, 李贝贝, 程翔, 等. 基于无人机高光谱遥感的烤烟叶片叶绿素含量估测[J]. 智慧农业(中英文), 2023, 5(2): 68-81.
[
|
[23] |
王玉娜, 李粉玲, 王伟东, 等. 基于无人机高光谱的冬小麦氮素营养监测[J]. 农业工程学报, 2020, 36(22): 31-39.
[
|
[24] |
高兴, 李斐, 杨海波, 等. 基于红边位置的马铃薯植株氮浓度估测方法研究[J]. 植物营养与肥料学报, 2019, 25(2): 296-310.
[
|
[25] |
|
[26] |
杨海波, 李斐, 张加康, 等. 基于高光谱指数估测马铃薯植株氮素浓度的敏感波段提取[J]. 植物营养与肥料学报, 2020, 26(3): 541-551.
[
|
[27] |
罗丹, 常庆瑞, 齐雁冰, 等. 基于光谱指数的冬小麦冠层叶绿素含量估算模型研究[J]. 麦类作物学报, 2016, 36(9): 1225-1233.
[
|
[28] |
班松涛, 田明璐, 常庆瑞, 等. 基于无人机高光谱影像的水稻叶片磷素含量估算[J]. 农业机械学报, 2021, 52(8): 163-171.
[
|
[29] |
杨福芹, 李蕊, 冯海宽, 等. 不同生育期冬小麦植株氮含量遥感反演方法比较[J]. 东北农业科学, 2023, 48(3): 118-124.
[
|
[30] |
张文旭, 佟炫梦, 周天航, 等. 基于高光谱成像的棉花叶片氮素含量遥感估测[J]. 沈阳农业大学学报, 2021, 52(5): 586-596.
[
|
/
〈 |
|
〉 |