Taking Wuhan City as a case, this paper uses social network analysis and other methods to compare the evolution characteristics of tourism flow network structure between the whole region and the central urban area of Wuhan City from 2010 to 2019, and discusses the influencing mechanism and optimization suggestions of the evolution of tourism flow network structure. Study found: Node function on the whole is better than that of Wuhan urban center, the cluster, radiation, and mediation ability of two scales node are not stable, the core node and the general node had differences between nodes function, part of the landscape value, facilities perfect nodes play an important radiation in both scale and aggregation function. The network density in the central urban area is higher and the network connection is closer. The tourism flow network at both scales shows an obvious “core-edge” structure, which has not yet formed a complete network structure with distinct layers and close connections. Tourism resources endowment and its spatial distribution, tourism node degree of convenient transportation, the dynamic change of tourists preference is the main factors influencing the development of tourism flow network structure evolution.
WANG Xiaofang, GUO Yan, LI Yusheng , ZHENG Wensheng
. Evolutionary Research on Network Structure of Urban Tourism Flow from a Multi-scale Perspective: A Case Study of Wuhan City[J]. Areal Research and Development, 2023
, 42(2)
: 93
-99
.
DOI: 10.3969/j.issn.1003-2363.2023.02.015
[1]周李,吴殿廷,虞虎,等.基于网络游记的城市旅游流网络结构演化研究:以北京市为例[J].地理科学,2020,40(2):298-307.
[2]董培海,李伟.国内旅游流基础理论研究述评[J].旅游研究,2015,7(1):34-40.
[3]张佑印,顾静,马耀峰.旅游流研究的进展、评价与展望[J].旅游学刊,2013,28(6):38-46.
[4]ALBERT N.Centralized Decentralization of Tourism Development:A Network Perspective[J].Annals of Tourism Reasearch,2012,40(5):235-259.
[5]GOSSLING S,HALL C M.Uncertainties in Predicting Tourist Flows under Scenarios of Climate Change[J].Climatic Change,2016,79(3/4):163-173.
[6]GOSHALL J.Spectral Analysis of International Tourism Flows[J].Annals of Tourism Research,2000,27(3):577-589.
[7]MCKERCHER B,GIGI L.Movemnet Pattems of Tourists within a Destination[J].Tourism Geographies,2008,10(10):355-374.
[8]UYSAL M,CROMPTON J L.Determinants of Demand for International Tourist Flows to Turkeyf[J].Tourism Management,1984,5(4):288-297.
[9]张凌云.旅游流空间分布模型:普洛格理论在定量研究中的推广[J].地域研究与开发,1988,7(3):41-42.
[10]任瑞萍,吴晋峰,王奕棋,等.旅华美国旅游流地理分布和网络结构特征研究[J].地域研究与开发,2013,32(5):144-150.
[11]马晓路,张哲乐.川西地区旅游流网络结构特征研究:基于散客游记与团队线路的比较分析[J].地域研究与开发,2021,40(1):126-131.
[12]刘法建,张捷,陈冬冬.中国入境旅游流网络结构特征及动因研究[J].地理学报,2010,65(8):1013-1024.
[13]李志飞,夏磊.中国特殊时段旅游流时空分布特征研究:以“十一”黄金周为例[J].旅游学刊,2013,28(10):37-46.
[14]赵明成,周凤杰,鲁小波,等.基于小波分析的锦州市旅游流时空特征研究[J].地域研究与开发,2019,38(3):84-88.
[15]杨国良,张捷,刘波.旅游流规模结构的Zipf特征与差异度对比研究:以四川省为例[J].南京大学学报(自然科学),2007,43(3):318-328.
[16]阎友兵,贺文娟.国内旅游流流量与流质的时空演化分析[J].经济地理,2013,33(4):179-185.
[17]徐敏,黄震方,曹芳东,等.基于在线预订数据分析的旅游流网络结构特征与影响因素:以长三角地区为例[J].经济地理,2018,38(6):193-202.
[18]王永明,王美霞,吴殿廷,等.基于ZINB模型的中国省域间入境旅游流影响因素[J].经济地理,2018,38(11):234-240.
[19]张妍妍,李君轶,杨敏.基于旅游数字足迹的西安旅游流网络结构研究[J].人文地理,2014,29(4):111-118.
[20]杨敏,李君轶,杨利.基于旅游数字足迹的城市入境游客时空行为研究;以成都市为例[J].旅游科学,2015,29(3):59-68.
[21]戢晓峰,张力丹,陈方,等.云南省自驾游发展水平与旅游交通可达性的空间分异及耦合[J].经济地理,2016,36(5):195-201.
[22]郭亚军.综合评价理论及方法的应用[M].北京:科学出版社,2006.
[23]童昀,马勇,刘军,等.大数据支持下的酒店业空间格局演进与预测:武汉案例[J].旅游学刊,2018,33(12):76-87.