寒区工程与灾害

超低温混凝土力学性能与抗冻融耐久性研究进展

展开
  • 1.中国科学院 西北生态环境资源研究院 冻土工程国家重点实验室, 甘肃 兰州 730000
    2.中国科学院大学, 北京 100049
    3.甘肃一安建设科技集团, 甘肃 兰州 730060
胡金泉,硕士研究生,主要从事超低温混凝土研究. E-mail: 1959278051@qq.com

网络出版日期: 2024-06-24

基金资助

国家自然科学基金项目(42322106);甘肃省科技重大专项(22ZD6FA004);甘肃省科技计划资助项目(23JRRA613)

Progress in mechanical properties and frost durability of ultra-low temperature concrete

Expand
  • 1.State Key Laboratory of Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
    2.University of Chinese Academy of Sciences, Beijing 100049, China
    3.Gansu Yi’an Construction Technology Group Co. Ltd. , Lanzhou 730060, China

Online published: 2024-06-24

摘要

随着天然气等清洁能源需求的快速增长,液化天然气(LNG)安全存储已成为所面临的一个重要挑战。混凝土由于其良好的力学特性,是目前LNG存储结构的一种重要工程材料。近年来,LNG产业快速发展也推动了混凝土超低温性能的相关研究。在超低温环境下混凝土的性能与常温环境下存在很大差异。现有研究表明,超低温环境下混凝土的抗压、抗拉强度与弹性模量显著增强,学者们根据试验结果给出了不同的性能预测公式,并结合孔隙水-冰相变过程解释了其性能增强的机理。超低温冻融循环试验结果表明,混凝土超低温抗冻融耐久性较差,仅几个冻融循环后力学性能就显著降低。现有的常规冻融试验手段不满足超低温冻融条件,尚缺乏专门针对超低温冻融条件下混凝土性能测试与评价的规范标准。此外,目前相关成果由于试验仪器与测试过程的差异而难以相互参考。因此,亟需系统总结现有超低温冻融条件下混凝土性能试验结果,完善特殊条件下混凝土试验相关规范,并通过大量试验数据的深入分析,助力超低温混凝土研究水平的发展。为此,本文全面总结分析了目前国内外在混凝土超低温试验平台、超低温力学性能、超低温冻融破坏机理与抗冻融耐久性提升方面的研究进展,并结合对现状的认识和思考,提出了未来超低温混凝土的研究方向,旨在为超低温混凝土试验研究提供参考。

本文引用格式

胡金泉, 裴万胜, 王冲, 陈诤 . 超低温混凝土力学性能与抗冻融耐久性研究进展[J]. 冰川冻土, 2024 , 46(1) : 111 -125 . DOI: 10.7522/j.issn.1000-0240.2024.0010

Abstract

With the rapid growth in demand for clean energy sources like natural gas, the safe storage of liquefied natural gas (LNG) has emerged as a significant challenge. Due to its excellent mechanical properties, concrete has become an important engineering material for LNG storage structures. In recent years, the development of the LNG industry has also propelled research into the ultra-low temperature performance of concrete. The performance of concrete at ultra-low temperatures greatly differs from that at normal temperatures. Current studies indicate that the compressive and tensile strengths, as well as the elastic modulus of concrete, are significantly enhanced in ultra-low temperature environments. Scholars have developed various performance prediction formulas based on experimental results and have explained the mechanism behind the enhanced performance by considering the pore water-ice phase transition process. Ultra-low temperature freeze-thaw cycle experiment results show that concrete has poor frost resistance at ultra-low temperatures, with a significant reduction in mechanical properties after just a few freeze-thaw cycles. The existing conventional freeze-thaw testing methods do not meet the requirements for ultra-low temperature freeze-thaw conditions, and there is a lack of specific standards for testing and evaluating concrete performance under these conditions. Moreover, due to differences in testing equipment and procedures, it is difficult to reference related achievements. Therefore, there is an urgent need to systematically summarize the existing experiment result of concrete performance under ultra-low temperature freeze-thaw conditions, improve the relevant standards for concrete testing under special conditions, and facilitate the development of research on ultra-low temperature concrete through in-depth analysis of a large amount of experimental data. To this end, this paper comprehensively summarizes and analyzes the progress in research on ultra-low temperature concrete testing platforms, mechanical properties at ultra-low temperatures, the mechanism of freeze-thaw damage under ultra-low temperature and large temperature difference conditions, and approaches to enhancing frost resistance and durability, both domestically and internationally. Based on the understanding and contemplation of the current state, future research directions for ultra-low temperature concrete are proposed, aiming to provide references for experimental studies on ultra-low temperature concrete.

Options
文章导航

/