Weather and Climate

Paleoclimatic evolution and driving mechanisms in arid areas of inland Asia during the Middle Miocene Climatic Optimum in the context of global climate warming

  • LYU Zhuangzhuang , 1, 2, 3 ,
  • QIAO Qingqing , 1, 3 ,
  • DONG Sunyi 1, 2, 3 ,
  • WANG Dong 1, 2, 3
Expand
  • 1. Xinjiang Research Center for Mineral Resources, Xinjiang Institute of Ecology And Geography, Chinese Academy of Sciences, Urumqi 830011, Xinjiang, China
  • 2. University of Chinese Academy of Sciences, Beijing 100049, China
  • 3. Xinjiang Key Laboratory of Mineral Resources and Digital Geology, Urumqi 830011, Xinjiang, China

Received date: 2023-12-12

  Revised date: 2024-04-26

  Online published: 2025-08-14

Abstract

The Mid-Miocene Climatic Optimum, a notable global warming event that occurred during cooling in the Cenozoic period, is being considered as a potential analog for future climate conditions. Arid areas of inland Asia are representative of mid-latitude arid zones throughout the globe, and their desertification exerts the strongest and most direct impacts on human habitation environments. Against the backdrop of global warming, which is compounded by human activities, these arid zones become increasingly fragile, with their expansion or alteration directly impacting human survival and sustainable development. The exploration of the climatic evolutionary history of the arid areas of inland Asia during the Middle Miocene under a global warming scenario can provide crucial insights for the projection of climate changes in arid regions under future warming patterns. This study reviewed the existing research on the paleoclimatic evolution during the Middle Miocene in typical basins of arid areas of inland Asia. Through a comprehensive analysis of various climatic proxies, including environmental magnetic parameters, pollen, and isotopes, the findings indicate the prevailing trend is toward increased humidity in most regions during this period, although there were variations in the timing of humidification and some areas remained arid. However, significant controversy remains regarding the primary regulator of the formation of the Mid-Miocene Climatic Optimum: some scholars argue that eruptions of Columbia basalt are the primary factor; others propose that tectonic activity is the main driver. To address the aforementioned controversies, obtaining higher-resolution records with precise age control is essential to determine the onset response time of the Mid-Miocene warming event. Through the accurate interpretation of climatic proxies, especially pollen, which directly and sensitively responds to paleoclimatic changes, as well as environmental magnetic parameters and geochemical ratios encapsulating paleoenvironmental information, the various factors influencing climate change can be clarified to reveal the driving mechanisms behind the climatic evolution during the Mid-Miocene Climatic Optimum in arid areas of inland Asia.

Cite this article

LYU Zhuangzhuang , QIAO Qingqing , DONG Sunyi , WANG Dong . Paleoclimatic evolution and driving mechanisms in arid areas of inland Asia during the Middle Miocene Climatic Optimum in the context of global climate warming[J]. Arid Zone Research, 2024 , 41(8) : 1309 -1322 . DOI: 10.13866/j.azr.2024.08.05

在地球历史上,气候一直处于变化之中,从寒冷的冰川时期到温暖的间冰期,不同的气候条件塑造了不同的生态系统和生物群落[1]。工业革命以来,人类活动产生的大量温室气体排放已经显著影响了地球的气候,并且推动地球进入了一个前所未有的温暖状态[2]。尽管这种增温状态在地球历史上找不到完全相同的相似型,但过去的气候——“古气候”为理解现今全球变暖提供了重要的科学依据。“研究过去是为了更好的预测将来”,因此越来越多的科学家试图从古气候变化规律中寻找未来全球变化的趋势。
构造尺度来看,新生代全球气候整体变冷,地球由两极无冰逐步过渡到两极有冰[3],但期间出现多个增温事件导致的气候适宜期[4]图1)。中中新世气候适宜期(Middle Miocene Climatic Optimum,MMCO),出现于~16.9~14.7 Ma前的中新世中期,是地质历史时期一次强烈的增温事件,当时大气CO2含量显著高于现今水平[5-6],温度比现在高3~4 ℃[7]。按照目前的碳排放趋势,未来100 a后的地球大气CO2浓度极可能会达到中新世暖期的水平[8-10],因此,该气候适宜期的成因和气候环境响应研究,对预测全球变暖背景下未来气候变化具有重要的科学和现实意义。我国西北干旱区受到低纬亚洲季风环流与中高纬西风环流双重影响,同时,也是亚洲内陆干旱区的重要部分,已成为全球变化研究的重点区域之一[11-15]。塔里木盆地位于亚洲内陆极端干旱区中心,具有亚洲大陆腹地独特的巨型地质地貌单元,是研究新生代气候环境变化的天然实验室。在印度与欧亚板块碰撞及其远程效应影响下,周缘的天山、西昆仑山等造山带发生强烈的构造隆升和剥蚀[16-18],在盆地边缘及内部堆积了巨厚的沉积地层,这些沉积地层记录了区域构造活动和气候演化历史,是建立亚洲内陆干旱区古环境演化框架的理想地区。从行星风系角度来看,塔里木盆地高空环流主要受到中纬度西风带影响,由于距离海洋较远,来自太平洋季风和印度洋季风的水汽被周围隆起的山脉阻挡,只有当西风环流强劲时,少量水汽才能进入塔里木盆地[19],太阳辐射是地球系统最重要的外部驱动力之一,对区域和全球气候变化均发挥着至关重要的作用。地球轨道参数(岁差、偏心率、斜率)的(准)周期性变化引起地球表面日照量产生(准)周期性变化,进而导致全球气候的(准)周期性变化(图2[20],并记录在沉积地层中[21-22]。塔里木盆地属于暖温带气候,太阳年总辐射量为575~627 kJ·cm-2,而太阳辐射作为气候环境的主要驱动因素,对位于中纬度地区的塔里木盆地古气候演化影响更大[23]
图1 新生代碳氧同位素记录及对应的温度曲线(据文献[3]修改)

Fig. 1 Cenozoic carbon and oxygen isotope records, temperature curves(modified according to reference [3])

图2 中新世底栖有孔虫碳氧同位素记录及其所受到轨道参数的强迫(据文献[20]修改)

注:~1.2 Ma倾角幅度调制周期以蓝色表示,~2.4 Ma偏心率周期以浅橙色表示,~405 Ka偏心率周期以深橙色表示。

Fig. 2 Miocene benthic foraminiferal carbon and oxygen isotope records and their orbital parameter forcings during the Neogene (modified according to reference [20])

现有记录显示,全球大部分地区MMCO期间温度和降水量均较现今高得多[24-31]。塔里木盆地作为亚洲内陆干旱区主体部分,研究其气候如何响应全球MMCO期间的气候变化,不仅有助于认识干旱区气候对全球气候变化和区域构造活动的响应,还对预估未来全球变暖背景下干旱区气候演化趋势方面具有重要的参考意义。因此,本文总结了前人对于塔里木盆地及其周边地区中中新世具有年代控制的沉积记录的研究结果,并与全球海陆古气候、区域构造隆升事件综合对比分析,旨在揭示塔里木盆地MMCO期间的气候演化特征,为亚洲内陆干旱化和中中新世气候演化及驱动机制研究提供依据,为未来气候变化和环境演变提供参考。

1 中中新世气候适宜期古气候记录

1.1 海洋记录

由于缺乏陆相记录,对中中新世气候适宜期的研究多来自于海洋钻孔。作为表层古海洋环境信息主要载体的有孔虫分布范围广泛,在海洋沉积物中大量保存,是重建古环境的基础[32]。中中新世前后气候的海洋记录主要依靠有孔虫δ18O作为深海温度和全球冰量的综合指标,记录了北半球冰盖的大小和新生代地球的冰期、间冰期旋回,δ18O迅速增加的时期对应冰量迅速增加的寒冷时期。中中新世之后,δ18O呈急剧增加趋势,表明此时为气候寒冷期,随后不同大洋太平洋DSDP(Deep Sea Drilling Project)574站点[33]、南大洋ODP(Ocean Drilling Program)站点[34]、南海ODP1146站点[35]和中太平洋IODP(International Ocean Discovery Program)U1335站点[36]均发现很明显的δ18O骤降(减少约1‰)现象,并伴随着δ13C(反映了海洋碳储库的大小)正偏[37],标志着全球气候开始变暖,南极平均冰量减少[38]。中中新世期间,海洋生物的种类数量也相应增加,浮游硅藻与钙质微型浮游生物经历了物种多样性的增长[31]。中新世早期珊瑚多样性大幅增加,到中期珊瑚礁在纬向上出现明显扩张,到晚期则生长范围普遍缩小[39]。新生代期间有壳软体动物多样性增加,而在中新世却有所放缓[40-41]。中新世早期深海鱼类物种丰富度有所增加,尤其最大的掠食性鲨鱼(巨齿鲨)中新世在全球分布广泛[42]。鲸目动物在中新世成为了海洋的顶端捕食者[20]。现代鲸鱼的两个主要群体是齿鲸(齿鲸和海豚)和神秘鲸(须鲸),这两个类群在中新世早期和中期多样化,在中新世晚期达到顶峰随后下降[43-45]。同样海豹和海象、海狮起源于渐新世,在中新世出现物种多样化,并且在全球范围内分布也更加广泛[46-48]

1.2 陆地记录

近年来,部分学者已对我国西北内陆干旱区中中新世期间的沉积记录开展了一系列研究(图3),并取得重要进展。下文将对塔里木盆地及周边地区的中中新世古气候演化记录进行描述。
图3 塔里木盆地及其周缘中中新世古气候记录剖面

Fig. 3 Sections from the margins of the Tarim Basin and the Qaidam Basin that have Middle Miocene paleoclimate records

1.2.1 西北内陆干旱区

现有西北干旱区多数记录显示在中中新世气候适宜期都出现了湿润化特征,但是湿润化出现的时间具有时空差异性,部分区域构造活动伴随气候状态改变,但有的区域存在构造活动但气候状态不变。
(1) 花土沟剖面
位于柴达木盆地西部的花土沟剖面,厚约4360 m,年龄跨度自渐新世至中新世晚期。Chang等[49]对花土沟剖面的上干柴沟组至上油沙山组进行古地磁定年,上干柴沟组顶部的时代约23 Ma,下油沙山组的时代约为23~12.4 Ma,上油沙山组的时代早于12.4 Ma。在此年龄基础上,Guan等[50]、Miao等[51]分别对花土沟剖面进行环境磁学、微炭研究。结果表明,中新世中期该地区磁化率升高,呈现出湿润化趋势(图4a),随后又出现了干旱化,与全球温度变化趋势吻合,推断受到了全球气候变暖的影响。微体炭屑记录显示,在中中新世气候适宜期表现为低值,之后(14~12 Ma)随着全球冰量/温度降低,表现出略微增加的趋势,表明该地区气候变得相对干冷,植物中耐旱类型增多。强调了全球变化驱动为主的驱动地区野火变化的理论机制。Li等[52]通过对花土沟地层进行相分析和稳定同位素研究,结果显示15~14 Ma周围山脉隆升,认为青藏高原北部及周边持续性隆升造成了13~12 Ma中亚内陆的干旱化。综上所述,该剖面在MMCO开始湿润化,MMCO之后逐渐干旱,与全球气候变化一致。
图4 西北干旱区中中新世古气候代用指标

注:(a) 柴达木花土沟剖面磁化率升高指示湿润[50];(b) 柴达木怀头他拉剖面叶蜡烷烃δD特征降低指示温度下降[62];(c) 准噶尔金沟河剖面辛普森指数升高指示湿润[68]

Fig. 4 Middle Miocene paleoclimate proxies in arid Northwest China

(2) KC-1剖面
KC-1剖面位于柴达木盆地西部,Miao等[53-55]对该剖面18~5 Ma的孢粉记录进行了分析,发现18~14 Ma期间喜温属种含量高,对应中中新世气候适宜期。随后逐渐减少,与此同时,旱生植物比例逐渐增加,表明气候变冷变干。进一步与全球气候变化对比,认为全球变冷驱动为主,同时认为柴达木盆地在MMCO之后东亚冬季风逐渐加强,而东亚夏季风逐渐减弱,导致了该地区的干旱化。青藏高原隆升也有一定作用。
(3) 路乐河剖面
路乐河剖面位于柴达木盆地北缘,出露于路乐河河谷,厚度达5000 m[56]。Duan等[57]通过古地磁定年限定路乐河组31~23.7 Ma,下干柴沟组23.7~18 Ma,上干柴沟组18~13 Ma,下油沙山组13~10 Ma,通过对沉积速率的估算认为青藏东北缘显著上升发生在中新世中期[58-59]。Wang等[60]通过古环境指标结合孢粉学研究,发现中新世早期至晚中新世早期(包含中中新世)气候干湿交替,变化频繁,总体更加湿润,认为主要是受全球气候变化影响,青藏高原隆起可能导致的持续性干旱在该地区并未体现。综上所述,该剖面在MMCO总体更加湿润,与全球气候变化一致。
(4) 怀头他拉剖面
怀头他拉剖面位于柴达木盆地东部,开始沉积的时间约为16 Ma[56],并且持续到第四纪。Fang等[61]对怀头他拉剖面进行详细的磁性地层学研究,建立了该剖面的年代框架,其中下油沙山组与上油沙山组的部分沉积时间在中中新世。Zhuang等[62]分析了怀头他拉叶蜡烷烃δD特征,发现15~10.4 Ma时期δD逐渐降低,认为指示构造活跃期,且温度下降(图4b),归因于该地区构造隆升的结果。Bao等[63]分析了剖面中黏土组分的地球化学组成,发现15.3~12.6 Ma期间化学蚀变指数相对高,指示化学风化强烈,而后硅酸盐风化强度降低,12.6 Ma之后盆地经历的持续性干旱,认为是受到了中中新世气候转型(MMCT,Middle Miocene Climatic Transition,MMCO之后快速气候变冷事件),全球联动的一个快速气候变化事件,气温下降,南极冰盖快速扩张)的影响,同时高原的快速隆升也具有一定作用。最近,Miao等[64]从生物指标角度,建立了反演古海拔高度的新方法,并应用到柴达木盆地晚新生代地层孢粉研究中。其中怀头他拉剖面的孢粉记录显示,15.6~14.1 Ma期间树木类占比平均为59%,以针叶类和阔叶类为主,而在14.1~8.3 Ma,针叶类占主导,阔叶类明显减少。柴达木盆地在约15 Ma前东、西部的古海拔分别为1332±189 m和433±189 m,其后东段在约11 Ma前迅速抬升至3685±87 m,西段在约7 Ma前迅速增加至3589±62 m,已接近现代高度。孢粉记录表明,青藏高原东北部在新生代晚期发生了强烈隆升,对区域气候环境和生态演化产生了极其重要影响。
(5) 金沟河剖面
金沟河剖面位于天山北缘,剖面中塔西河组厚度为550 m,年龄为17.5~13.2 Ma[65]。地层记录显示,中新世以来气候状态发生变化[66-67]。Tang等[68-69]通过对金沟河剖面进行孢粉研究发现,23.8~23.3 Ma气候由湿润转变为干旱,并且一直持续到17.3 Ma,在干旱或半干旱区辛普森指数升高指示进入相对湿润状态并持续到16.2 Ma,16.2 Ma之后指数降低指示开始逐渐变干旱并在13.5 Ma达到峰值(图4c)。Charreau等[70]结合先前的古地磁定年对金沟河剖面中的河流、湖泊相沉积进行研究,获得了高分辨率的碳氧同位素记录,发现在16 Ma时由于C4植物扩张导致碳同位素略有升高,可能代表着气候的逐渐湿润化。Tang等[67]和Ji等[71]通过磁化率各向异性、沉积速率揭示出在16.5~14.0 Ma、~13~11 Ma天山快速隆起,认为金沟河剖面所记录的气候变化的长期趋势受控于全球气候的变化,而短期的气候事件则受制于区域构造活动。由于孢粉是古气候最直接、敏感的代用指标,孢粉记录显示金沟河剖面在MMCO时期持续干旱,只有17.3~16.2 Ma相对湿润。

1.2.2 塔里木盆地

塔里木盆地是我国最大的内陆盆地,位于天山山脉和昆仑山脉之间,是大型封闭性山间盆地,地质构造上是周围被许多深大断裂所限制的稳定地块,典型的暖温带大陆性极端干旱气候。中新世之前,塔里木盆地与塔吉克-卡拉库姆板块相连,到中新世才成为独立的盆地[72]。在中新世期间,塔里木南部发生了强烈的挤压作用,导致天山隆升并向盆地扩展。同时,西昆仑也发生了强烈的褶皱和断裂活动,阿尔金断裂带和阿合奇断裂带构成了塔里木盆地的东南与西北边界[73]
前人已利用沉积学、孢粉学、环境磁学、地球化学等不同方法对塔里木盆地新生代以来的古气候进行了大量的研究,但这些工作主要集中在塔里木盆地晚中新世以来的气候记录[46-49],尤其是以风成沉积为代表的极端干旱气候的起始时间[74-77]。Sun等[76]研究了塔里木盆地的沉积记录,重建了13.3 Ma以来的古气候演化,发现两次干旱化事件。Liu等[75]对塔里木盆地罗布泊附近沉积岩心进行分析,研究显示塔里木盆地在约4.9 Ma曾出现大规模湖泊群。通过进一步研究碳酸盐碳氧同位素和粒度记录,建立了7 Ma以来塔克拉玛干沙漠的演化历史,并认为由于全球中更新世气候转型期的气候变化使得永久性沙漠在0.5~0.7 Ma左右形成[78]
尽管对塔里木盆地中新世以来的干旱化进程有着丰富的研究成果,但关于中中新世气候适宜期的古气候演化资料却相对匮乏。目前,仅对3个剖面展开了相关研究,研究结果表明,塔里木盆地不同区域在中中新世气候适宜期存在构造活动,但气候状态各不相同,与西北干旱区的其他地区一样,塔里木盆地中中新世气候的研究仍存在一些问题有待进一步厘清。以下将总结目前3个塔里木盆地剖面中中新世古气候的主要研究进展。
(1) 库车、拜城剖面
库车坳陷位于塔里木盆地北缘,是一个以中—新生界沉积为主的叠合型前陆盆地[79],沉积了大约10 km的陆相地层。库车坳陷自北向南划分为北部构造带、克拉苏构造带、拜城凹陷、秋里塔格冲断带[80]。中中新世地层位于吉迪克组与康村组[79]。李双建等[81]通过沉积物颜色测定和黏土矿物分析探讨了塔里木盆地北缘库车坳陷自第三纪以来的古气候变化。研究认为,在13~12 Ma时本区发生了一次较大的古气候变化,在35~13 Ma期间,沉积物颜色较红(图5a),指示该地区主要呈现温暖干旱的气候;而在12~5 Ma期间,气候则呈现干冷和温湿交替的环境。Huang 等[79]对库车剖面开展了详细的磁性地层学、沉积学、岩石磁性组构地层学研究,发现~16~17 Ma天山褶皱带发生了快速隆升。唐自华等[82]对库车剖面的孢粉分析显示,30 Ma以来库车剖面一直以干旱草本麻黄、蒿等为主,在中中新世时期,木本孢粉栎、榆、桦含量略有增加,可能指示了当时气候相对湿润。Zhang等[83]对塔里木盆地北缘拜城剖面进行的环境磁学研究认为,S-ratio在17~14 Ma 期间升高指示该地区相对温暖湿润(图5b),与中中新世气候适宜期相对应。综合以上研究,库车剖面色度数据显示出中中新世干旱化的趋势,而孢粉数据则显示出湿润化特征,与拜城剖面显示的特征一致,那么库车剖面在中中新世气候适宜期到底是湿润还是干旱需要进行更深入的研究。
图5 塔里木盆地中中新世古气候代用指标

注:(a) 库车剖面红度较高指示温度升高[81];(b) 拜城剖面S-ratio升高指示湿润[83];(c) 江尕勒萨伊剖面δ18O正偏指示干旱[85]

Fig. 5 Paleoclimate proxy indicators for the Tarim Basin during the Mid-Miocene

(2) 江尕勒萨伊剖面
江尕勒萨伊剖面位于塔里木盆地东南缘,南临阿尔金山,剖面厚度为2750 m,剖面时代为22.3~11 Ma[84]。Kent-Corson等[85]对位于江尕勒萨伊西约5 km的老江尕勒萨伊剖面进行碳氧同位素测定,发现δ18O(氧同位素)正偏,认为指示16 Ma以来江尕勒萨伊地区气候干旱化逐渐增强(图5c)。卢海建等[84]对剖面开展了磁化率各向异性研究,其结果显示在16 Ma左右阿尔金山出现了快速抬升,他们认为这一快速抬升事件导致了气候干旱化的加剧。

2 中中新世气候适宜期构造尺度气候变暖的驱动机制

亚洲内陆干旱区典型盆地的沉积记录,多数显示在MMCO时期存在气候湿润期,与全球MMCO期间的气候特征具有相似性,推测亚洲内陆干旱区MMCO期间的气候主要受全球气候变化影响。古生物学、地球化学和岩石磁学研究表明,MMCO期间温度和降水量显著增加[86-89]。但部分剖面的古气候记录显示干旱化特征,可能为区域构造活动的时空差异性。尤其是青藏高原的构造活动。青藏高原抬升改变了海陆热力差异和大气环流,通过对周围水汽的屏障作用来影响季风降水以及内陆干旱程度[90-93]。Tada等[94]综合前人的研究,认为青藏高原东北部和东部在15~10 Ma隆起。青藏高原在中新世整体上已上升至海拔3000 m左右[95]。而受到印度和欧亚大陆碰撞的远程效应,中新世至上新世初期,整个天山剧烈隆起[96]。亚洲内陆干旱区中中新世气候适宜期的气候演化可能主要受全球气候变化影响,区域构造活动控制也具有一定作用。
近年来对全球平均气温的观测发现,温度正以前所未有的速度上升。科学家对全球气候变暖的原因进行了全面评估,主要原因包括人为导致的温室气体增加、太阳辐射、火山活动以及地球自身温室气体释放[97]。并指出温室气体信号大部分是由人类活动引起的。而在中中新世气候适宜期并没有人类活动,是什么引起了温室气体的释放?大陆溢流玄武岩喷发在短时间内可以释放大量的SO2和CO2,其作为地球史上最大的火山喷发事件,被普遍认为可以引起全球气候的变化。在中中新世,哥伦比亚河溢流玄武岩(CRBG)的喷发被认为与大气中CO2的升高及全球变暖有着直接的联系。Kasbohm等[98]利用U-Pb地质年代学对美国太平洋西北部玄武岩底地层进行研究,建立了高分辨率哥伦比亚河溢流玄武岩(CRBG)喷发记录,结果显示,超过95%CRBG在16.7~15.9 Ma喷发,几乎与中中新世同时发生,同时碳氧同位素记录显示δ13C正偏,δ18O负偏(图6[98-99],认为玄武岩喷发导致了大量CO2、SO2的排放,进而推动了全球环境变化。Longman等[100]通过使用一个新的连续生物地球化学模型,反映出哥伦比亚玄武岩喷发与其导致的持续CO2排放是中中新世气候演化主要驱动作用,同时该研究认为MMCO后的立即冷却,仅凭玄武岩体的风化增强是不足够的,海洋化学变化是主要的原因。
图6 哥伦比亚河溢流玄武岩与中中新世的相关性(据文献[98-99]修改)

注:每个彩色的矩形面积对应每个地层的体积,宽度受到锆石年龄的限制,图中白色矩形数值为比例尺。

Fig. 6 The relationship between the Columbia Basalt Group and the Middle Eocene (modified according to reference [98-99])

哥伦比亚河玄武岩喷发是导致中中新世气候变暖的相对比较主流的假说,关于全球气候升温构造尺度驱动机制的假设还有其他观点,包括风化侵蚀(硅酸盐风化与气候变化存在一种负反馈机制:温度升高,风化加速,二氧化碳减少,气候变冷,反之变暖)[101]、海底扩张(地幔物质通过海洋地壳上的分裂带涌出,导致CO2大量被排放,进而气候变暖)[102]。造成气候变暖的另一因素太阳辐射,太阳提供了驱动地球气候系统的能量,太阳辐射的组成和强度的变化可能会造成全球和区域气候的变化。由于风化侵蚀会导致碳汇,导致大气中碳含量降低,从而全球气温下降,而MMCO之后的MMCT伴随δ13C负偏,因此,风化侵蚀可以作为MMCT的合理解释。玄武岩喷发释放CO2只能解释δ13C正偏的MMCO事件却无法解释δ13C负偏的MMCT事件,因此,可以考虑将两种驱动机制有机结合。而新生代以来海底扩张速率逐渐降低,CO2释放速率也随之降低,同时有一部分CO2还会在释放过程中与热洋壳发生反应,导致被洋壳吸收,因此,海底扩张也无法完美解释MMCO事件[103]。长期气候变化是由大气接受到的太阳辐射变化驱动的[104],影响地球接收太阳辐射强度的三要素:偏心率、斜率、岁差,它们的周期性变化引起地球表面接收日照量周期性变化,并引起气候的周期性变化,大量证据证明在地质历史时期天文轨道与气候存在明显的相关性[105-107],但是,太阳辐射与CO2之间的关系却缺少相应的证据,因此,太阳辐射可以解释气候变化但是却无法解释MMCO时期δ13C正偏现象。
对于MMCO事件的驱动机制,亚洲内陆干旱区在MMCO时期气候变化的驱动机制依然存在诸多争议,研究过程中着重关注单因素机制,缺少多机制耦合效应的讨论,随着越来越多地质证据以及高密度高分辨率的数据记录的出现,将为气候增温事件的解释提供更多的机遇。

3 存在的问题及展望

中中新世气候适宜期柴达木和塔里木盆地内部的地质记录相对丰富,这些地质记录是研究亚洲内陆气候变化的重要依据。然而,由于新生代地层的精确年代存在争议,中中新世地层是否能准确记录古气候环境演化信息尚待商榷。研究发现,两个盆地的一些气候代用指标记录显示,在中中新世气候适宜期表现出湿润化的特征,但湿润化的开始和结束时间存在差异,并且不同构造活动区的气候状态也不尽相同。陆地环境最直接和有效的古气候定量重建主要是依赖于古生物或地球化学替代性指标进行数值转换。孢粉分析是众多陆地生物指标中最重要的方法之一,因为它对气候的响应是最直接最敏感的。在进行古气候重建时,应优先考虑孢粉作为定量气候重建的手段。近年来的观测显示,干旱区的温度和降水有所增加。在全球气候变暖的趋势下,我国西北干旱区可能会逐渐变得更加湿润。为了更准确地预测未来气候变化并有效应对全球变化,需要更多高分辨率的年代框架和气候记录作为约束条件,以便更好地预测干旱区气候千年尺度上的演变,并进一步厘清构造活动与气候状态变化之间的耦合关系。鉴于气候驱动机制的复杂性,在探讨区域构造与全球气候变化时可能会存在多种解释,因此应首先从全球尺度考虑气候变化的影响,然后再与区域构造活动进行对比。重点应放在同一地区不同剖面的对比上,以减少不确定性。
[1]
沈树忠, 张飞飞, 王文倩, 等. 深时重大生物和气候事件与全球变化:进展与挑战[J]. 科学通报, 2024, 69(2): 268-285.

[ Shen Shuzhong, Zhang Feifei, Wang Wenqian, et al. Deep-time significant biological and climatic events and global change: Progress and challenges[J]. Science Bulletin, 2024, 69(2): 268-285. ]

[2]
张品茹. 气候变化与全球生物多样性[J]. 生态经济, 2023, 39(2): 5-8.

[ Zhang Pinru. Climate change and global biodiversity[J]. Ecological Economics, 2023, 39(2): 5-8. ]

[3]
Westerhold T, Marwan N, Drury A J, et al. An astronomically dated record of Earth’s climate and its predictability over the last 66 million years[J]. Science, 2020, 369(6509): 1383-1387.

[4]
唐自华. 新生代主要暖期及其对“人为变暖”的启示[J]. 第四纪研究, 2011, 31(6): 1053-1059.

[ Tang Zihua. Major warm periods in the Holocene and their implications for “anthropogenic warming”[J]. Quaternary Sciences, 2011, 31(6): 1053-1059. ]

[5]
You Y, Huber M, Müller R D, et al. Simulation of the Middle Miocene Climate Optimum[J]. Geophysical Research Letters, 2009, 36(4): L04702.

[6]
Zachos J, Pagani M, Sloan L, et al. Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present[J]. Science, 2001, 292(5517): 686-693.

[7]
Reuter M, Kern A K, Harzhauser M, et al. Global warming and South Indian monsoon rainfall-lessons from the Mid-Miocene[J]. Gondwana Research, 2013, 23(3): 1172-1177.

[8]
Scholz S R, Petersen S V, Escobar J, et al. Isotope sclerochronology indicates enhanced seasonal precipitation in northern South America (Colombia) during the Mid-Miocene Climatic Optimum[J]. Geology, 2020, 48(7): 668-672.

[9]
Sosdian S M, Babila T L, Greenop R, et al. Ocean carbon storage across the Middle Miocene: A new interpretation for the Monterey Event[J]. Nature Communications, 2020, 11(1): 134.

[10]
Wang B, Shi G, Xu C, et al. The Mid-Miocene Zhangpu biota reveals an outstandingly rich rainforest biome in East Asia[J]. Science Advances, 7(18): eabg0625.

[11]
Chen F, Xie T, Yang Y, et al. Discussion of the “warming and wetting” trend and its future variation in the drylands of Northwest China under global warming[J]. Science China-Earth Sciences, 2023, 66(6): 1241-1257.

[12]
Dai S, Zhang M Z, Peng D X, et al. The mesozoic-cenozoic evolution of the tectonic and climatic patterns, NW China[J]. Marine Geology & Quaternary Geology, 2013, 33(4): 153-168.

[13]
赵领娣, 冯剑. 中国西北干旱区城市水、大气污染排放与FDI关系研究[J]. 干旱区研究, 2020, 37(1): 67-73.

[ Zhao Lingdi, Feng Jian. Relationship between water & air pollutant emission and FDI in arid cities in Northwest China[J]. Arid Zone Research, 2020, 37(1): 67-73. ]

[14]
杨雪梅, 王倩, 魏怀东. 气候变暖背景下近30 a北半球植被变化研究综述[J]. 干旱区研究, 2016, 33(2): 379-391.

[ Yang Xuemei, Wang Qian, Wei Huaidong. Vegetation variation in the North Hemisphere under climate warming in the last 30 years[J]. Arid Zone Research, 2016, 33(2): 379-391. ]

[15]
何珍珍, 王宏卫, 杨胜天, 等. 塔里木盆地中北部绿洲生态安全评价[J]. 干旱区研究, 2018, 35(4): 963-970.

[ He Zhenzhen, Wang Hongwei, Yang Shengtian, et al. Evaluation on ecological security and analysis of influence factors of oasis in Northwest arid region[J]. Arid Zone Research, 2018, 35(4): 963-970. ]

[16]
Molnar P, Tapponnier P. Cenozoic tectonics of Asia: Effects of a continental collision[J]. Science, 1975, 189(4201): 419-426.

[17]
Sun J, Zhu R, Bowler J. Timing of the Tianshan Mountains uplift constrained by magnetostratigraphic analysis of molasse deposits[J]. Earth and Planetary Science Letters, 2004, 219(3): 239-253.

[18]
Tapponnier P, Molnar P. Active faulting and Cenozoic tectonics of the Tien Shan, Mongolia, and Baykal regions[J]. Journal of Geophysical Research: Solid Earth, 1979, 84(B7): 3425-3459.

[19]
滕晓华, 张志高, 韩文霞, 等. 塔里木盆地南缘黄土粒度特征及其环境意义[J]. 沉积学报, 2015, 33(5): 941-950.

[ Teng Xiaohua, Zhang Zhigao, Han Wenxia, et al. Loess grain size characteristics and their environmental significance in the southern margin of the Tarim Basin[J]. Acta Sedimentologica Sinica, 2015, 33(5): 941-950. ]

[20]
Steinthorsdottir M, Coxall H K, Boer A M D, et al. The Miocene: The future of the past[J]. Paleoceanography and Paleoclimatology, 2020, 36(4): e2020PA004037.

[21]
Milanković M. Canon of Insolation and the Ice-age Problem (Kanon der Erdbestrahlung und seine Anwendung auf das Eiszeitenproblem) Belgrade, 1941[M]. Jerusalem: Israel Program for Scientific Translations; [available from U.S. Dept. of Commerce, Clearinghouse for Federal Scientific and Technical Information, Springfield, Va.]Jerusalem, 1969.

[22]
Berger A. Milankovitch theory and climate[J]. Reviews of Geophysics, 1988, 26(4): 624-657.

[23]
中国大百科全书总编辑委员会, 《中国地理》编辑部. 中国大百科全书: 中国地理[M]. 北京: 中国大百科全书出版社, 1993.

[ General Editorial Committee of the Encyclopedia of China, Editorial Department of China Geography. Encyclopedia of China: Geography of China[M]. Beijing: Encyclopedia of China Publishing House, 1993. ]

[24]
Hui Z, Zhang J, Ma Z, et al. Global warming and rainfall: Lessons from an analysis of Mid-Miocene climate data[J]. Cenozoic Climate Change in Eastern Asia-PART II, 2018, 512: 106-117.

[25]
You Y. Climate-model evaluation of the contribution of sea-surface temperature and carbon dioxide to the Middle Miocene Climate Optimum as a possible analogue of future climate change[J]. Australian Journal of Earth Sciences, 2010, 57(2): 207-219.

[26]
Ennyu A. Middle Miocene Climate Evolution in the Pacific Realm[D]. Pennsylvania State: The Pennsylvania State University, 2003.

[27]
Wei J, Liu H, Zhao Y, et al. Simulation of the climate and ocean circulations in the Middle Miocene Climate Optimum by a coupled model FGOALS-g3[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2023, 617: 111509.

[28]
Goldner A, Herold N, Huber M. The challenge of simulating the warmth of the mid-Miocene climatic optimum in CESM1[J]. Climate of The Past, 2014, 10(2): 523-536.

[29]
商沙沙, 廉丽姝, 马婷, 等. 近54 a中国西北地区来气温和降水的时空变化特征[J]. 干旱区研究, 2018, 35(1): 68-76.

[ Shang Shasha, Lian Lishu, Ma Ting, et al. The temporal and spatial characteristics of temperature and precipitation in Northwestern China in recent 54 years[J]. Arid Zone Research, 2018, 35(1): 68-76. ]

[30]
曾帝, 刘世伟, 秦甲. 西北干旱区降水中氢氧同位素研究进展[J]. 干旱区研究, 2020, 37(4): 857-869.

[ Zeng Di, Liu Shiwei, Qin Jia. Research progress on hydrogen and oxygen isotopes in precipitation in the arid region of Northwest China[J]. Arid Zone Research, 2020, 37(4): 857-869. ]

[31]
Miao Y, Zhang T, Huang K, et al. Pollen assemblages reflect a Mid-Miocene precipitation gradient in the northeastern Tibetan Plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2023, 617: 111514.

[32]
Li Yue, Li Bo, Li Tao. Distribution pattern and influence factors of benthic foraminifera in the surface sediments of northern South China Sea[J]. Marine Geology Letters, 2022, 38(2): 30-36.

[33]
Woodruff F, Savin S. Mid-Miocene isotope stratigraphy in the deep sea: High-resolution correlations, paleoclimatic cycles, and sediment preservation[J]. Paleoceanography, 1991, 6(6): 755-806.

[34]
Billups K, Channell J E T, Zachos J. Late Oligocene to early Miocene geochronology and paleoceanography from the subantarctic South Atlantic[J]. Paleoceanography and Paleoclimatology, 2002, 17(1): 4-1-4-11.

[35]
Holbourn A, Kuhnt W, Schulz M, et al. Orbitally-paced climate evolution during the middle Miocene “Monterey” carbon-isotope excursion[J]. Earth and Planetary Science Letters, 2007, 261(3): 534-550.

[36]
Kochhann K G D, Holbourn A, Kuhnt W, et al. Eccentricity pacing of eastern equatorial Pacific carbonate dissolution cycles during the Miocene Climatic Optimum[J]. Paleoceanography, 2016, 31(9): 1176-1192.

[37]
Holbourn A, Kuhnt W, Kochhann K G D, et al. Global perturbation of the carbon cycle at the onset of the Miocene Climatic Optimum[J]. Geology, 2015, 43(2): 123-126.

[38]
Miller K G, Browning J V, Schmelz W J, et al. Cenozoic sea-level and cryospheric evolution from deep-sea geochemical and continental margin records[J]. Science Advances, 6(20): eaaz1346.

[39]
Bouchet P, Bary S, Virginie H, et al. How many species of molluscs are there in the world’s oceans, and who is going to describe them?[J]. Mémoires du Muséum National d’Histoire Naturelle, 2016, 208: 9-24.

[40]
Crampton J S, Beu A G, Cooper R A, et al. The ark was full! Constant to declining Cenozoic shallow marine biodiversity on an isolated midlatitude continent[J]. Paleobiology, 2006, 32(4): 509-532.

[41]
Mondal S, Harries P J. The effect of taxonomic corrections on phanerozoic generic richness trends in Marine Bivalves with a discussion on the Clade’s overall history[J]. Paleobiology, 2016, 42(1): 157-171.

[42]
Sibert E, Norris R, Cuevas J, et al. Eighty-five million years of Pacific Ocean gyre ecosystem structure: Long-term stability marked by punctuated change[J]. Proceedings of the Royal Society B: Biological Sciences, 2016, 283(1831): 20160189.

[43]
Quental T B, Marshall C R. Diversity dynamics: Molecular phylogenies need the fossil record[J]. Trends in Ecology & Evolution, 2010, 25(8): 434-441.

[44]
Marx F G, Fordyce R E. Baleen boom and bust: A synthesis of mysticete phylogeny, diversity and disparity[J]. Royal Society Open Science, 2015, 2(4): 140434.

[45]
Marx F G, Uhen M D. Climate, critters, and cetaceans: Cenozoic drivers of the evolution of modern whales[J]. Science, 2010, 327(5968): 993-996.

[46]
Berta A, Churchill M, Boessenecker R W. The origin and evolutionary biology of pinnipeds: Seals, sea lions, and walruses[J]. Annual Review of Earth and Planetary Sciences, 2018, 46(1): 203-228.

[47]
Koretsky I A, Domning D P. One of the oldest seals (Carnivora, Phocidae) from the old world[J]. Journal of Vertebrate Paleontology, 2014, 34(1): 224-229.

[48]
Churchill M, Boessenecker R W, Clementz M T. Colonization of the Southern Hemisphere by fur seals and sea lions (Carnivora: Otariidae) revealed by combined evidence phylogenetic and Bayesian biogeographical analysis[J]. Zoological Journal of the Linnean Society, 2014, 172(1): 200-225.

[49]
Chang H, Li L, Qiang X, et al. Magnetostratigraphy of Cenozoic deposits in the western Qaidam Basin and its implication for the surface uplift of the northeastern margin of the Tibetan Plateau[J]. Earth and Planetary Science Letters, 2015, 430: 271-283.

[50]
Guan C, Chang H, Yan M, et al. Rock magnetic constraints for the Mid-Miocene Climatic Optimum from a high-resolution sedimentary sequence of the northwestern Qaidam Basin, NE Tibetan Plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 532: 109263.

[51]
Miao Y, Chang H, Li L, et al. Early Oligocene-Late Miocene wildfire history in the Northern Tibetan Plateau and links to temperature-driven precipitation changes[J]. Frontiers in Earth Science, 2022, 10. http://dx.doi.org/10.3389/feart.2022.850809.

[52]
Li L, Garzione C N, Pullen A, et al. Early-middle Miocene topographic growth of the northern Tibetan Plateau: Stable isotope and sedimentation evidence from the southwestern Qaidam Basin[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 461: 201-213.

[53]
Miao Y, Fang X, Liu Y Christopher, et al. Late Cenozoic pollen concentration in the western Qaidam Basin, northern Tibetan Plateau, and its significance for paleoclimate and tectonics[J]. Review of Palaeobotany and Palynology, 2016, 231: 14-22.

[54]
Miao Y, Fang X, Herrmann M, et al. Miocene pollen record of KC-1 core in the Qaidam Basin, NE Tibetan Plateau and implications for evolution of the East Asian monsoon[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 299(1): 30-38.

[55]
Miao Y. Late Cenozoic continuous aridification in the western Qaidam Basin: Evidence from sporopollen records[J]. Climate of the Past, 2013, 9: 1863-1877.

[56]
王伟涛, 张培震, 段磊, 等. 柴达木盆地新生代地层年代框架与沉积-构造演化[J]. 科学通报, 2022, 67(Z2): 3452-3475.

[ Wang Weitao, Zhang Peixia, Duan Lei, et al. Cenozoic stratigraphic framework and sedimentary-tectonic evolution of the Qaidam Basin[J]. Chinese Science Bulletin, 2022, 67(Z2): 3452-3475. ]

[57]
Duan L, Zhan B, Wang W, et al. Magnetostratigraphy of the Cenozoic Lulehe section in the Qaidam Basin: Implications for the tectonic deformation on the northeastern Tibetan Plateau[J]. Chinese Science Bulletin-Chinese, 2022, 67(9): 872-887.

[58]
Yu J, Zheng D, Wang W, et al. Cenozoic tectonic development in the northeastern Tibetan Plateau: Evidence from thermochronological and sedimentological records[J]. Global and Planetary Change, 2023, 224. DOI: 10.1016/j.gloplacha.2023.104098.

[59]
Li C, Zheng D, Zhou R, et al. Topographic growth of the northeastern Tibetan Plateau during the middle-late Miocene: Insights from integrated provenance analysis in the NE Qaidam Basin[J]. Basin Research, 2021, 33(6): 3212-3230.

[60]
Wang Y, Sun G, Zhang S, et al. Depositional environment changes during the cenozoic in the Northeastern Margin of the Qinghai-Tibet Plateau[J]. Processes, 2022, 10(5). DOI: 10.3390/pr10051000.

[61]
Fang X, Zhang W, Meng Q, et al. High-resolution magnetostratigraphy of the Neogene Huaitoutala section in the eastern Qaidam Basin on the NE Tibetan Plateau, Qinghai Province, China and its implication on tectonic uplift of the NE Tibetan Plateau[J]. Earth and Planetary Science Letters, 2007, 258(1): 293-306.

[62]
Zhuang G, Brandon M T, Pagani M, et al. Leaf wax stable isotopes from Northern Tibetan Plateau: Implications for uplift and climate since 15 Ma[J]. Earth and Planetary Science Letters, 2014, 390: 186-198.

[63]
Bao J, Song C, Yang Y, et al. Reduced chemical weathering intensity in the Qaidam Basin (NE Tibetan Plateau) during the Late Cenozoic[J]. Journal of Asian Earth Sciences, 2019, 170: 155-165.

[64]
Miao Y, Fang X, Sun J, et al. A new biologic paleoaltimetry indicating Late Miocene rapid uplift of northern Tibet Plateau[J]. Science, 2022, 378(6624): 1074-1079.

[65]
陈熠, 方小敏, 宋春晖, 等. 准噶尔盆地南缘新生代沉积物碎屑锆石记录的天山隆升剥蚀过程[J]. 地学前缘, 2012, 19(5): 225-233.

[ Chen Yi, Fang Xiaomin, Song Chunhui, et al. Tianshan uplift and erosion process recorded by detrital zircons from Cenozoic sediments in the southern margin of the Junggar Basin[J]. Earth Science Frontiers, 2012, 19(5): 225-233. ]

[66]
Charreau J, Chen Y, Gilder S, et al. Neogene uplift of the Tian Shan Mountains observed in the magnetic record of the Jingou River section (northwest China)[J]. Tectonics, 2009, 28. http://dx.doi.org/10.1029/2007TC002137.

[67]
Tang Z, Huang B, Dong X, et al. Anisotropy of magnetic susceptibility of the Jingou River section: Implications for late Cenozoic uplift of the Tian Shan[J]. Geochemistry Geophysics Geosystems, 2012, 13. https://doi.org/10.1029/2011GC003966.

[68]
Tang Z, Ding Z, White P, et al. Late Cenozoic central Asian drying inferred from a palynological record from the northern Tian Shan[J]. Earth and Planetary Science Letters, 2011, 302(3-4): 439-447.

[69]
Tang Z H, Ding Z L. A palynological insight into the Miocene aridification in the Eurasian interior[J]. Neogene Climate and Environmental Evolution in Eastern Eurasia, 2013, 22(3): 77-85.

[70]
Charreau J, Kent-Corson M, Barrier L, et al. A high-resolution stable isotopic record from the Junggar Basin (NW China): Implications for the paleotopographic evolution of the Tianshan Mountains[J]. Earth and Planetary Science Letters, 2012, 341: 158-169.

[71]
Ji J, Luo P, White P, et al. Episodic uplift of the Tianshan Mountains since the late Oligocene constrained by magnetostratigraphy of the Jingou River section, in the southern margin of the Junggar Basin, China[J]. Journal of Geophysical Research-Solid Earth, 2008, 113(B5). https://doi.org/10.1029/2007JB005064.

[72]
何登发, 贾承造. 塔里木多旋回叠合盆地的形成与演化[J]. 石油与天然气地质, 2005(1): 64-77.

[ He Dengfa, Jia Chengzao. Formation and evolution of the Tarim multi-cycle superimposed basin[J]. Oil & Gas Geology, 2005(1): 64-77. ]

[73]
Chang H, An Z, Wu F, et al. Late Miocene-early Pleistocene climate change in the mid-latitude westerlies and their influence on Asian monsoon as constrained by the K/Al ratio record from drill core Ls2 in the Tarim Basin[J]. Catena, 2017, 153: 75-82.

[74]
Heermance R V, Pearson J, Moe A, et al. Erg deposition and development of the ancestral Taklimakan Desert (western China) between 12.2 and 7.0 Ma[J]. Geology, 2018, 46(10): 919-922.

[75]
Liu W, Liu Z, An Z, et al. Late Miocene episodic lakes in the arid Tarim Basin, western China[J]. Proceedings of the National Academy of Sciences, 2014, 111(46): 16292-16296.

[76]
Sun J, Gong Z, Tian Z, et al. Late Miocene stepwise aridification in the Asian interior and the interplay between tectonics and climate[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 421: 48-59.

[77]
Sun J, Liu W, Liu Z, et al. Extreme aridification since the beginning of the Pliocene in the Tarim Basin, western China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 485: 189-200.

[78]
Liu W, Liu Z, Sun J, et al. Onset of permanent Taklimakan Desert linked to the mid-Pleistocene transition[J]. Geology, 2020, 48(8): 782-786.

[79]
Huang B, Piper J, Peng S, et al. Magnetostratigraphic study of the Kuche depression, Tarim Basin, and Cenozoic uplift of the Tian Shan range, Western China[J]. Earth and Planetary Science Letters, 2006, 251(3-4): 346-364.

[80]
刘立炜, 周慧, 张承泽, 等. 库车坳陷克拉苏构造带协同变形机制及盆山耦合关系[J]. 地质科学, 2022, 57(1): 61-72.

[ Liu Liwei, Zhou Hui, Zhang Chengze, et al. Synergetic deformation mechanism and basin-mountain coupling relationship of the Kelasu Structural Belt in the Kuqa Depression[J]. Geological Science, 2022, 57(1): 61-72. ]

[81]
李双建, 张然, 王清晨. 沉积物颜色和黏土矿物对库车坳陷第三纪气候变化的指示[J]. 沉积学报, 2006, 24(4): 521-530.

[ Li Shuangjian, Zhang Ran, Wang Qingchen. Indications of tertiary climate change in the Kuqa Depression from sediment color and clay minerals[J]. Acta Sedimentologica Sinica, 2006, 24(4): 521-530. ]

[82]
唐自华, 丁仲礼. 塔里木至少30 Ma以来持续干旱[C]// 中国地球物理学会, 中国地震学会, 全国岩石学与地球动力学研讨会组委会, 中国地质学会构造地质学与地球动力学专业委员会, 中国地质学会区域地质与成矿专业委员会. 2017中国地球科学联合学术年会论文集(十二)——专题24:青藏高原隆升与风化剥蚀和气候变化、专题25:南北地震带强震活动的深浅部构造特征与动力学机制. 北京: 中国和平音像电子出版社, 2017: 1.

[ Tang Zihua, Ding Zhongli. Persistent aridity in Tarim for at least 30 Ma[C]// China Geophysical Society, Seismological Society of China, National Organizing Committee for the Symposium on Petrology and Geodynamics, Structural Geology and Geodynamics Committee of the Geological Society of China, Regional Geology and Mineral Resources Committee of the Geological Society of China. Proceedings of the 2017 Joint Annual Conference of Chinese Earth Sciences (Volume Twelve)—Special Topic 24:Uplift and Weathering Erosion of the Tibetan Plateau and Climate Change, Special Topic 25:Deep and Shallow Structural Characteristics and Dynamic Mechanisms of Strong Earthquake Activity in the North-South Seismic Belt. Beijing: China Peace Audio-Visual and Electronic Publishing House, 2017: 1. ]

[83]
Zhang Z, Sun J, L, et al. Neogene climate evolution of the Tarim Basin, NW China: Evidence from environmental magnetism of the southern Tian Shan foreland[J]. Global and Planetary Change, 2020, 194: 103314.

[84]
卢海建, 李海兵, 刘栋梁. 中中新世中亚构造抬升驱动气候干旱化: 以塔里木盆地东南缘江尕勒萨伊剖面为例[J]. 中国地质, 2014, 41(5): 1724-1734.

[ Lu Haijian, Li Haibing, Liu Dongliang. Uplift-driven climatic aridity during the middle Miocene: A case study of the Janggalsay section, southeast Tarim Basin[J]. Geology in China, 2014, 41(5): 1724-1734. ]

[85]
Kent-Corson M L, Ritts B D, Zhuang G, et al. Stable isotopic constraints on the tectonic, topographic, and climatic evolution of the northern margin of the Tibetan Plateau[J]. Earth and Planetary Science Letters, 2009, 282(1): 158-166.

[86]
Böhme M. The Miocene climatic optimum: Evidence from ectothermic vertebrates of Central Europe[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2003, 195(3-4): 389-401.

[87]
Mosbrugger V, Utescher T, Dilcher D L. Cenozoic continental climatic evolution of Central Europe[J]. Proceedings of the National Academy of Sciences, 2005, 102(42): 14964-14969.

[88]
Hauptvogel D W, Passchier S. Early-Middle Miocene (17-14 Ma) Antarctic ice dynamics reconstructed from the heavy mineral provenance in the AND-2A drill core, Ross Sea, Antarctica[J]. Global and Planetary Change, 2012, 82: 38-50.

[89]
Lebreton-Anberrée J, Li S, Li S F, et al. Lake geochemistry reveals marked environmental change in Southwest China during the Mid-Miocene Climatic Optimum[J]. Science Bulletin, 2016, 61(11): 897-910.

[90]
鹿化煜, 郭正堂. 晚新生代东亚气候变化: 进展与问题[J]. 中国科学: 地球科学, 2013, 43(12): 1907-1918.

[ Lu Huayu, Guo Zhengtang. Climate change in East Asia during the Late Cenozoic: Progress and issues[J]. Science China: Earth Sciences, 2013, 43(12): 1907-1918. ]

[91]
Kutzbach J, Guetter P, Ruddiman W, et al. Sensitivity of climate to late Cenozoic uplift in southern Asia and the American west: numerical experiments[J]. Journal of Geophysical Research: Atmospheres, 1989, 94(D15): 18393-18407.

[92]
Liu X, Yin Z. Sensitivity of East Asian monsoon climate to the uplift of the Tibetan Plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2002, 183(3-4): 223-245.

[93]
Manabe S, Terpstra T B. The effects of mountains on the general circulation of the atmosphere as identified by numerical experiments[J]. Journal of the atmospheric Sciences, 1974, 31(1): 3-42.

[94]
Tada R, Zheng H, Clift P D. Evolution and variability of the Asian monsoon and its potential linkage with uplift of the Himalaya and Tibetan Plateau[J]. Progress in Earth and Planetary Science, 2016, 3: 1-26.

[95]
邓涛, 方小敏, 李强, 等. 青藏高原及其周边新近纪综合地层、生物群与古地理演化[J]. 中国科学: 地球科学, 2024, 54(4): 1343-1378.

[ Deng Tao, Fang Xiaomin, Li Qiang, et al. Integrative neogene stratigraphy, biotas and paleogeographic evolution of the Tibetan Plateau and its surrounding area[J]. Science China: Earth Sciences, 2024, 54(4): 1343-1378. ]

[96]
高志勇, 周川闽, 冯佳睿, 等. 中新生代天山隆升及其南北盆地分异与沉积环境演化[J]. 沉积学报, 2016, 34(3): 415-435.

[ Gao Zhiyong, Zhou Chuanmin, Feng Jiarui, et al. Tectonic uplift of the Cenozoic era in the Tianshan Mountains and its differentiation between southern and northern basins and sedimentary environment evolution[J]. Acta Sedimentologica Sinica, 2016, 34(3): 415-435. ]

[97]
Detection and Attribution of Climate Change: From Global to Regional[M]. Intergovernmental Panel on Climate Change. Climate Change 2013-The Physical Science Basis. 1st ed.ed. Cambridge University Press, 2014: 867-952.

[98]
Kasbohm J, Schoene B. Rapid eruption of the Columbia River flood basalt and correlation with the Mid-Miocene Climate Optimum[J]. Science Advances, 2018, 4(9): eaat8223.

[99]
Cramer B S, Toggweiler J R, Wright J D, et al. Ocean overturning since the Late Cretaceous: Inferences from a new benthic foraminiferal isotope compilation[J]. Paleoceanography, 2009, 24(4). https://doi.org/10.1029/2008PA001683.

[100]
Longman J, Mills B J W, Donnadieu Y, et al. Assessing volcanic controls on Miocene climate change[J]. Geophysical Research Letters, 2022, 49(2). https://doi.org/10.1029/2021GL096519.

[101]
Penman D E, Caves Rugenstein J K, Ibarra D E, et al. Silicate weathering as a feedback and forcing in Earth’s climate and carbon cycle[J]. Earth-Science Reviews, 2020, 209: 103298.

[102]
Berner R A, Lasaga A C, Garrels R M. The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years[J]. American Journal of Science, 1983, 283(7): 641-683.

[103]
张少华, 纪伟强, 陈厚彬. 早始新世气候适宜期的驱动机制研究进展: 来自藏南林子宗火山岩的制约[J]. 岩石学报, 2022, 38(5): 1313-1327.

[ Zhang Shaohua, Ji Weiqiang, Chen Houbin. Research progress on the driving mechanisms of the Early Eocene climatic optimum: Constraints from the Linzizong volcanic rocks in southern Tibet[J]. Acta Petrologica Sinica, 2022, 38(5): 1313-1327. ]

[104]
Loutre M F, Berger A. Modeling the glacial-interglacial cycles in response to astronomical and CO2 forcings[C]// Berger A, Ercegovac M, Mesinger F. Milutin Milankovitch Anniversary Symposium: Paleoclimate And The Earth Climate System, 2005, 110: 173-183.

[105]
余继峰, 李卿宋, 召军. 从地层磁化率数据中提取米兰科维奇旋回信息[C]// Proceedings of 2011 AASRI Conference on Artificial Intelligence and Industry Application(AASRI-AIIA 2011 V3). 山东省沉积成矿作用与沉积矿产重点实验室, 山东科技大学地质科学与工程学院, 2011: 425-429.

[ Yu Jifeng, Li Qingsong, Zhao Jun. Extracting Information of Milankovitch Cycles from Formation Magnetic Susceptibility Data[C]// Proceedings of 2011 AASRI Conference on Artificial Intelligence and Industry Application (AASRI-AIIA 2011 V3). Shandong Provincial Key Laboratory of Sedimentary Mineralization and Sedimentary Minerals, School of Geosciences and Engineering, Shandong University of Science and Technology, 2011: 425-429. ]

[106]
刘孟凯, 房强, 吴怀春, 等. 华南纳庆剖面早二叠世沉积记录对米兰科维奇旋回的响应[J]. 第四纪研究, 2023, 43(6): 1526-1537.

[ Liu Mengkai, Fang Qiang, Wu Huaichun, et al. Response of Early Permian Sedimentary records in the Naqing section of South China to the Milankovitch cycle[J]. Quaternary Sciences, 2023, 43(6): 1526-1537. ]

[107]
黄春菊. 旋回地层学和天文年代学及其在中生代的研究现状[J]. 地学前缘, 2014, 21(2): 48-66.

[ Huang Chunju. Cyclostratigraphy and astronomical chronology and their research status in the Mesozoic[J]. Earth Science Frontiers, 2014, 21(2): 48-66.]

Outlines

/