Paleoclimatic evolution and driving mechanisms in arid areas of inland Asia during the Middle Miocene Climatic Optimum in the context of global climate warming
Received date: 2023-12-12
Revised date: 2024-04-26
Online published: 2025-08-14
The Mid-Miocene Climatic Optimum, a notable global warming event that occurred during cooling in the Cenozoic period, is being considered as a potential analog for future climate conditions. Arid areas of inland Asia are representative of mid-latitude arid zones throughout the globe, and their desertification exerts the strongest and most direct impacts on human habitation environments. Against the backdrop of global warming, which is compounded by human activities, these arid zones become increasingly fragile, with their expansion or alteration directly impacting human survival and sustainable development. The exploration of the climatic evolutionary history of the arid areas of inland Asia during the Middle Miocene under a global warming scenario can provide crucial insights for the projection of climate changes in arid regions under future warming patterns. This study reviewed the existing research on the paleoclimatic evolution during the Middle Miocene in typical basins of arid areas of inland Asia. Through a comprehensive analysis of various climatic proxies, including environmental magnetic parameters, pollen, and isotopes, the findings indicate the prevailing trend is toward increased humidity in most regions during this period, although there were variations in the timing of humidification and some areas remained arid. However, significant controversy remains regarding the primary regulator of the formation of the Mid-Miocene Climatic Optimum: some scholars argue that eruptions of Columbia basalt are the primary factor; others propose that tectonic activity is the main driver. To address the aforementioned controversies, obtaining higher-resolution records with precise age control is essential to determine the onset response time of the Mid-Miocene warming event. Through the accurate interpretation of climatic proxies, especially pollen, which directly and sensitively responds to paleoclimatic changes, as well as environmental magnetic parameters and geochemical ratios encapsulating paleoenvironmental information, the various factors influencing climate change can be clarified to reveal the driving mechanisms behind the climatic evolution during the Mid-Miocene Climatic Optimum in arid areas of inland Asia.
LYU Zhuangzhuang , QIAO Qingqing , DONG Sunyi , WANG Dong . Paleoclimatic evolution and driving mechanisms in arid areas of inland Asia during the Middle Miocene Climatic Optimum in the context of global climate warming[J]. Arid Zone Research, 2024 , 41(8) : 1309 -1322 . DOI: 10.13866/j.azr.2024.08.05
[1] |
沈树忠, 张飞飞, 王文倩, 等. 深时重大生物和气候事件与全球变化:进展与挑战[J]. 科学通报, 2024, 69(2): 268-285.
[
|
[2] |
张品茹. 气候变化与全球生物多样性[J]. 生态经济, 2023, 39(2): 5-8.
[
|
[3] |
|
[4] |
唐自华. 新生代主要暖期及其对“人为变暖”的启示[J]. 第四纪研究, 2011, 31(6): 1053-1059.
[
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
赵领娣, 冯剑. 中国西北干旱区城市水、大气污染排放与FDI关系研究[J]. 干旱区研究, 2020, 37(1): 67-73.
[
|
[14] |
杨雪梅, 王倩, 魏怀东. 气候变暖背景下近30 a北半球植被变化研究综述[J]. 干旱区研究, 2016, 33(2): 379-391.
[
|
[15] |
何珍珍, 王宏卫, 杨胜天, 等. 塔里木盆地中北部绿洲生态安全评价[J]. 干旱区研究, 2018, 35(4): 963-970.
[
|
[16] |
|
[17] |
|
[18] |
|
[19] |
滕晓华, 张志高, 韩文霞, 等. 塔里木盆地南缘黄土粒度特征及其环境意义[J]. 沉积学报, 2015, 33(5): 941-950.
[
|
[20] |
|
[21] |
|
[22] |
|
[23] |
中国大百科全书总编辑委员会, 《中国地理》编辑部. 中国大百科全书: 中国地理[M]. 北京: 中国大百科全书出版社, 1993.
[ General Editorial Committee of the Encyclopedia of China, Editorial Department of China Geography. Encyclopedia of China: Geography of China[M]. Beijing: Encyclopedia of China Publishing House, 1993. ]
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
商沙沙, 廉丽姝, 马婷, 等. 近54 a中国西北地区来气温和降水的时空变化特征[J]. 干旱区研究, 2018, 35(1): 68-76.
[
|
[30] |
曾帝, 刘世伟, 秦甲. 西北干旱区降水中氢氧同位素研究进展[J]. 干旱区研究, 2020, 37(4): 857-869.
[
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
[41] |
|
[42] |
|
[43] |
|
[44] |
|
[45] |
|
[46] |
|
[47] |
|
[48] |
|
[49] |
|
[50] |
|
[51] |
|
[52] |
|
[53] |
|
[54] |
|
[55] |
|
[56] |
王伟涛, 张培震, 段磊, 等. 柴达木盆地新生代地层年代框架与沉积-构造演化[J]. 科学通报, 2022, 67(Z2): 3452-3475.
[
|
[57] |
|
[58] |
|
[59] |
|
[60] |
|
[61] |
|
[62] |
|
[63] |
|
[64] |
|
[65] |
陈熠, 方小敏, 宋春晖, 等. 准噶尔盆地南缘新生代沉积物碎屑锆石记录的天山隆升剥蚀过程[J]. 地学前缘, 2012, 19(5): 225-233.
[
|
[66] |
|
[67] |
|
[68] |
|
[69] |
|
[70] |
|
[71] |
|
[72] |
何登发, 贾承造. 塔里木多旋回叠合盆地的形成与演化[J]. 石油与天然气地质, 2005(1): 64-77.
[
|
[73] |
|
[74] |
|
[75] |
|
[76] |
|
[77] |
|
[78] |
|
[79] |
|
[80] |
刘立炜, 周慧, 张承泽, 等. 库车坳陷克拉苏构造带协同变形机制及盆山耦合关系[J]. 地质科学, 2022, 57(1): 61-72.
[
|
[81] |
李双建, 张然, 王清晨. 沉积物颜色和黏土矿物对库车坳陷第三纪气候变化的指示[J]. 沉积学报, 2006, 24(4): 521-530.
[
|
[82] |
唐自华, 丁仲礼. 塔里木至少30 Ma以来持续干旱[C]// 中国地球物理学会, 中国地震学会, 全国岩石学与地球动力学研讨会组委会, 中国地质学会构造地质学与地球动力学专业委员会, 中国地质学会区域地质与成矿专业委员会. 2017中国地球科学联合学术年会论文集(十二)——专题24:青藏高原隆升与风化剥蚀和气候变化、专题25:南北地震带强震活动的深浅部构造特征与动力学机制. 北京: 中国和平音像电子出版社, 2017: 1.
[
|
[83] |
|
[84] |
卢海建, 李海兵, 刘栋梁. 中中新世中亚构造抬升驱动气候干旱化: 以塔里木盆地东南缘江尕勒萨伊剖面为例[J]. 中国地质, 2014, 41(5): 1724-1734.
[
|
[85] |
|
[86] |
|
[87] |
|
[88] |
|
[89] |
|
[90] |
鹿化煜, 郭正堂. 晚新生代东亚气候变化: 进展与问题[J]. 中国科学: 地球科学, 2013, 43(12): 1907-1918.
[
|
[91] |
|
[92] |
|
[93] |
|
[94] |
|
[95] |
邓涛, 方小敏, 李强, 等. 青藏高原及其周边新近纪综合地层、生物群与古地理演化[J]. 中国科学: 地球科学, 2024, 54(4): 1343-1378.
[
|
[96] |
高志勇, 周川闽, 冯佳睿, 等. 中新生代天山隆升及其南北盆地分异与沉积环境演化[J]. 沉积学报, 2016, 34(3): 415-435.
[
|
[97] |
Detection and Attribution of Climate Change: From Global to Regional[M]. Intergovernmental Panel on Climate Change. Climate Change 2013-The Physical Science Basis. 1st ed.ed. Cambridge University Press, 2014: 867-952.
|
[98] |
|
[99] |
|
[100] |
|
[101] |
|
[102] |
|
[103] |
张少华, 纪伟强, 陈厚彬. 早始新世气候适宜期的驱动机制研究进展: 来自藏南林子宗火山岩的制约[J]. 岩石学报, 2022, 38(5): 1313-1327.
[
|
[104] |
|
[105] |
余继峰, 李卿宋, 召军. 从地层磁化率数据中提取米兰科维奇旋回信息[C]// Proceedings of 2011 AASRI Conference on Artificial Intelligence and Industry Application(AASRI-AIIA 2011 V3). 山东省沉积成矿作用与沉积矿产重点实验室, 山东科技大学地质科学与工程学院, 2011: 425-429.
[
|
[106] |
刘孟凯, 房强, 吴怀春, 等. 华南纳庆剖面早二叠世沉积记录对米兰科维奇旋回的响应[J]. 第四纪研究, 2023, 43(6): 1526-1537.
[
|
[107] |
黄春菊. 旋回地层学和天文年代学及其在中生代的研究现状[J]. 地学前缘, 2014, 21(2): 48-66.
[
|
/
〈 |
|
〉 |