Effects of three plant-based sand-fixing agents on water infiltration and evaporation in aeolian sandy soil
Received date: 2024-10-23
Revised date: 2025-01-25
Online published: 2025-08-14
Plant-based sand-fixing agents are ecofriendly materials that effectively stabilize sand without polluting the soil, and their decomposition products promote plant growth. This study investigated the physical characteristics of consolidated layers formed by plant-based sand-fixing agents and their effects on soil water movement in sandy farmland using water infiltration and evaporation simulation experiments with three plant-based sand-fixing agents (Artemisia desertorum, flax, and black locust) and six application rates (0.5 g·m-2, 1.0 g·m-2, 2.0 g·m-2, 3.0 g·m-2, 4.0 g·m-2, and 5.0 g·m-2). Wind-sand soil sprayed with the same amount of pure water served as the control (CK). The results showed the following: (1) The soil physical properties were altered. The compressive strength of the consolidated layer was in the order of black locust >flax >Artemisia desertorum>CK. The average compressive strength of the consolidated layer treated with the three agents increased by 109.38%, 95.06%, and 58.46% compared with CK, respectively. The compressive strength of the same agent increased with concentration. Soil bulk density increased with higher application rates, with a maximum increase of 3.76% compared with CK. Meanwhile, the total porosity and saturated and minimum water-holding capacity decreased by up to 44.55%, 47.65%, and 53.62%, respectively, compared with CK. (2) The water infiltration rate was effectively reduced. The infiltration times were as follows: flax (29.53 min)≈black locust (29.52 min) >Artemisia desertorum (29.03 min) >CK (26.08 min). As the application rate increased, the infiltration time showed a U-shaped trend for black locust and flax agents, whereas Artemisia desertorum increased gradually. (3) The soil water evaporation rates were significantly reduced. For all three agents, the application rates of 2.0-4.0 g·m-2 demonstrated the most pronounced effects. (4) Application rates of 2.0-4.0 g·m-2 improved water retention and prevented excessively slow water infiltration. This study provides theoretical support for the exploration of new sand-fixing agents and their application in the prevention of wind erosion in sandy farmland soils.
LIU Yue , GUO Qiang , YUAN Limin , DANG Xiaohong , MENG Zhongju , DONG Jing . Effects of three plant-based sand-fixing agents on water infiltration and evaporation in aeolian sandy soil[J]. Arid Zone Research, 2025 , 42(4) : 658 -667 . DOI: 10.13866/j.azr.2025.04.08
表1 固沙剂基本参数Tab. 1 Basic parameters of sand fixation agent |
固沙剂名称 | 编号 | 提取原料 | 形态 | 颜色 | 应用方式 |
---|---|---|---|---|---|
沙蒿固沙剂 | S | 沙蒿种子 | 粉末状 | 白色 | 水溶液 |
亚麻固沙剂 | R | 亚麻种子或其油渣饼粕 | 粉末状 | 白色 | 水溶液 |
刺槐固沙剂 | F | 刺槐果实或种子 | 粉末状 | 白色 | 水溶液 |
[1] |
王仁德, 邹学勇, 赵婧妍, 等. 北京市平原区农田土壤蚀积特征分析[J]. 水土保持学报, 2011, 25(1): 20-24, 29.
[
|
[2] |
张越, 陈思宇, 毕鸿儒, 等. 干旱半干旱区农田土壤风蚀特征及参数化研究进展[J]. 中国沙漠, 2022, 42(3): 105-117.
[
|
[3] |
苑依笑, 王仁德, 常春平, 等. 风蚀作用下农田土壤细颗粒的粒度损失特征及其对土壤性质影响[J]. 水土保持学报, 2018, 32(2): 104-109.
[
|
[4] |
韩明会, 李保国, 张丹, 等. 再生农业——基于土地保护性利用的可持续农业[J]. 中国农业科学, 2021, 54(5): 1003-1016.
[
|
[5] |
杨宇. 添加粉碎玉米秸秆对风沙区耕地土壤物理性质及土壤风蚀的影响[D]. 呼和浩特: 内蒙古农业大学, 2022.
[
|
[6] |
赖俊华, 张凯, 王维树, 等. 化学固沙材料研究进展及展望[J]. 中国沙漠, 2017, 37(4): 644-658.
[
|
[7] |
王丹, 宋湛谦, 商士斌. 改性木质素磺酸盐固沙剂的性能及应用研究[J]. 林产化学与工业, 2005, 25(S1): 59-63.
[
|
[8] |
任廷婕, 袁立敏, 高永, 等. 环保型固沙材料的研究进展[J]. 中国沙漠, 2023, 43(3): 1-9.
[
|
[9] |
邱立明, 唐佳芮, 袁榕, 等. 亚麻胶、亚麻木酚素的提取及分离纯化技术研究进展[J]. 粮食与食品工业, 2021, 28(3): 40-43, 47.
[
|
[10] |
闫德仁, 曲娜, 薛博, 等. 水溶性亚麻饼粕籽胶固沙剂制备条件研究[J]. 内蒙古林业科技, 2021, 47(4): 19-24.
[
|
[11] |
姜疆, 谢慧芳, 金永灿. 木质素磺酸盐基生物质固沙材料的部分生物效应[J]. 环境科学与技术, 2012, 35(12): 22-26.
[
|
[12] |
包志鑫, 袁立敏, 贾瑞庭, 等. 固沙剂性能及环保材料发展现状与趋势[J]. 内蒙古林业科技, 2022, 48(3): 54-58.
[
|
[13] |
王爱娣. 黏土基复合固沙材料性能研究[D]. 兰州: 西北师范大学, 2013.
[
|
[14] |
朱震达, 赵兴梁, 凌裕泉, 等. 治沙工程学[M]. 北京: 中国环境出版社, 1998: 117-137.
[
|
[15] |
申闫春, 杨献青, 王芳辉, 等. 丙烯酰胺改性羟丙基纤维素固沙剂的研制[J]. 科技创新与应用, 2018(26): 45-46.
[
|
[16] |
|
[17] |
侯晓晖, 王煦, 赵文娜, 等. 沙蒿胶及其羧甲基化改性产物的性能评价[J]. 广州化学, 2004, 29(4): 24-28.
[
|
[18] |
|
[19] |
李建法, 宋湛谦. 高分子土壤结构改良材料的研究及应用[J]. 高分子通报, 2003(5): 70-74, 35.
[
|
[20] |
李建法. 新型高分子沙土稳定材料的研制与应用[D]. 北京: 中国林业科学研究院, 2003.
[
|
[21] |
刘军, 张宇清, 秦树高, 等. 不同喷洒浓度沙蒿胶固沙效果试验[J]. 农业工程学报, 2016, 32(5): 149-155.
[
|
[22] |
任廷婕. 植物基固沙剂在沙质耕地的应用效应研究[D]. 呼和浩特: 内蒙古农业大学, 2023.
[
|
[23] |
王全九, 邵明安, 郑继勇. 土壤中水分运动与溶质迁移[M]. 北京: 中国水利水电出版社, 2007.
[
|
[24] |
闫婷, 闫德仁, 曲娜, 等. 水溶性籽胶固沙剂及应用效果[J]. 林业科技通讯, 2019(5): 109-111.
[
|
[25] |
刘辉, 王玉伟, 邹继颖, 等. 新型环保固沙剂的性能研究[J]. 吉林化工学院学报, 2020, 37(1): 77-80.
[
|
[26] |
|
[27] |
杨鹏华, 胡广录, 李昊辰, 等. 荒漠-绿洲过渡带典型固沙植物根区土壤优先流特征[J]. 干旱区研究, 2025, 42(1): 127-140.
[
|
[28] |
胡广录, 刘鹏, 李嘉楠, 等. 黑河中游绿洲边缘三种景观类型土壤水分动态特征及影响因素[J]. 干旱区研究, 2024, 41(4): 550-565.
[
|
[29] |
刘敦华, 谷文英, 丁霄霖. 沙蒿胶对面团流变性质的影响及在面包加工中的应用[J]. 农业工程学报, 2009, 25(S1): 233-236.
[
|
[30] |
陈国靖. 宁南黄土丘陵区土壤理化性质对不同植被恢复模式的响应[D]. 银川: 宁夏大学, 2018.
[
|
[31] |
|
[32] |
王志超, 张博文, 倪嘉轩, 等. 微塑料对土壤水分入渗和蒸发的影响[J]. 环境科学, 2022, 43(8): 4394-4401.
[
|
[33] |
刘万智, 赵锦梅, 张露韡, 等. 黄土陡坡人工植被下土壤表层的水文效应[J]. 水土保持通报, 2024, 44(2): 119-127, 186.
[
|
[34] |
刘冠亨, 吴冠宇, 李建德, 等. 降雨过程中土壤物理结皮入渗情况及当量孔径的变化研究[J]. 干旱区研究, 2023, 40(10): 1608-1614.
[
|
[35] |
|
[36] |
姚正毅, 韩致文, 赵爱国, 等. 化学固沙结层的力学强度与抗风蚀能力关系[J]. 干旱区资源与环境, 2009, 23(2): 191-195.
[
|
[37] |
杨明坤. 纤维素基环保固沙剂的制备与性能研究[D]. 北京: 北京化工大学, 2012.
[
|
[38] |
尹应武, 保雄伟, 李德中, 等. 生物基磺酸盐在土壤沙漠化治理中的应用研究[J]. 现代农业科技, 2021(1): 185-192.
[
|
[39] |
鲁小珍, 金永灿, 杨益琴, 等. 木质素固沙材料应用于沙漠化地区植被恢复的研究[J]. 林业科学, 2005, 41(4): 67-71.
[
|
[40] |
赵永贵. 保水剂的开发及应用进展[J]. 中国水土保持, 1995(5): 52-54.
[
|
/
〈 |
|
〉 |