Soil moisture under different irrigation patterns in sandy loam farmland in the middle reaches of the Heihe River dynamic simulation
Received date: 2024-12-23
Revised date: 2025-04-29
Online published: 2025-08-13
In arid areas, farmlands are few, water-holding capacity is poor, seepage is considerable, and crop yield is low. Understanding soil moisture movement in sandy loam farmland is crucial for conserving water resources and enhancing crop yields. This study focused on the sandy loam maize farmland in the middle reaches of the Heihe River, and three experimental plots—flat film irrigation, ridge mulching irrigation, and drip irrigation under film irrigation—were set up. The HYDRUS-2D model was used to simulate the soil moisture migration process of the maize farmland under different irrigation modes. The results revealed that: (1) The simulated values of the HYDRUS-2D model agreed strongly with the measured data, with R2 reaching more than 0.864 and RMSE remaining below 0.006 cm3·cm-3, which verified the feasibility and reliability of the model in the dynamic simulation of soil moisture in sandy loam farmland. (2) Compared with the flat land mulching irrigation mode, the ridge mulching irrigation mode could increase the soil volume water content of the crops’ root zone by about 20% and reduce the seepage loss by 13.3% when the irrigation water volume was reduced by 2099 m3·hm-2. Compared with the flat land mulching irrigation mode, the drip irrigation mode under film irrigation could reduce the irrigation water consumption by 50% and the leakage by 50.7%. (3) The drip irrigation mode under film displayed “frequent irrigation and small amount” so that the water could be more directly and efficiently replenished in the crops’ root zone, which significantly improved the soil volume water content in the root zone of maize and further reduced the seepage. The sandy loam farmland in the middle reaches of the Heihe River should be irrigated by drip irrigation under film to save water and increase yield. (4) The HYDRUS-2D model’s parameter system can also provide a reference for the dynamic simulation of irrigation water in the same type of sandy loam farmland in northern China.
LI Haochen , HU Guanglu , WANG Tao , CHEN Ning , LI Jianan , FAN Yalun . Soil moisture under different irrigation patterns in sandy loam farmland in the middle reaches of the Heihe River dynamic simulation[J]. Arid Zone Research, 2025 , 42(7) : 1333 -1347 . DOI: 10.13866/j.azr.2025.07.16
表1 样地0~100 cm土层土壤物理性质Tab. 1 Soil properties of 0-100 cm soil layer in the test field |
取样位置 | 土层深度 /cm | 机械组成/% | 容重 /(g·cm-3) | ||
---|---|---|---|---|---|
黏粒 | 粉粒 | 砂粒 | |||
行间裸地区 | 0~20 | 1.19 | 21.31 | 77.5 | 1.61 |
20~40 | 1.29 | 19.43 | 79.28 | 1.59 | |
40~60 | 0 | 0.87 | 99.13 | 1.53 | |
60~80 | 0 | 0.41 | 99.59 | 1.55 | |
80~100 | 0 | 1.19 | 98.81 | 1.55 | |
地膜覆盖区 | 0~20 | 1.45 | 22.13 | 76.42 | 1.59 |
20~40 | 1.60 | 21.97 | 76.5 | 1.55 | |
40~60 | 0 | 0.90 | 99.10 | 1.58 | |
60~80 | 0 | 0.51 | 99.49 | 1.51 | |
80~100 | 0 | 1.15 | 98.85 | 1.54 |
注:土壤粒径分级标准采用美国农业部标准。将土壤机械组成按其粒径大小分为黏粒(<2 μm)、粉粒(2~50 μm)、砂粒(>50 μm)。 |
表2 土壤水分特征参数Tab. 2 Soil water characteristic parameters |
土层深度/cm | 残余含水量θr/(cm3·cm-3) | 饱和含水量θs/(cm3·cm-3) | 进气吸力α/cm-1 | 形状系数n | 饱和导水率Ks/(cm·d-1) |
---|---|---|---|---|---|
0~20 | 0.0144 | 0.3644 | 0.12 | 1.93 | 54.45 |
20~40 | 0.0101 | 0.3676 | 0.14 | 1.98 | 108.27 |
40~60 | 0.0081 | 0.3641 | 0.02 | 2.26 | 358.16 |
60~80 | 0.0079 | 0.3632 | 0.02 | 3.18 | 373.51 |
80~100 | 0.0078 | 0.3655 | 0.03 | 3.14 | 404.91 |
表3 平地覆膜模式下土壤体积含水量实测值描述性统计Tab. 3 Descriptive statistics of measured soil volume water content under flat mulching mode |
农田区域 | 土层深度/cm | 最小值/(cm3·cm-3) | 最大值/(cm3·cm-3) | 平均值/(cm3·cm-3) | 方差 | 标准差 | 变异系数Cv/% |
---|---|---|---|---|---|---|---|
覆膜区域 | 0~20 | 0.136 | 0.167 | 0.145 | 0.018 | 0.010 | 6.8 |
20~40 | 0.127 | 0.167 | 0.140 | 0.021 | 0.011 | 8.0 | |
40~60 | 0.114 | 0.145 | 0.128 | 0.016 | 0.010 | 7.5 | |
60~80 | 0.110 | 0.138 | 0.124 | 0.015 | 0.009 | 7.3 | |
80~100 | 0.096 | 0.136 | 0.116 | 0.026 | 0.011 | 9.5 | |
裸露区域 | 0~20 | 0.139 | 0.181 | 0.157 | 0.019 | 0.024 | 9.1 |
20~40 | 0.121 | 0.175 | 0.146 | 0.023 | 0.027 | 11.3 | |
40~60 | 0.138 | 0.164 | 0.149 | 0.016 | 0.011 | 5.1 | |
60~80 | 0.119 | 0.151 | 0.134 | 0.017 | 0.017 | 7.0 | |
80~100 | 0.106 | 0.148 | 0.123 | 0.020 | 0.022 | 10.8 |
图10 膜下滴灌模式下土壤体积含水量时间序列HYDRUS-2D模型模拟Fig. 10 Simulation of soil volumetric water content time series HYDRUS-2D model under drip irrigation mode |
图11 5 cm·d-1滴灌水头下土壤体积含水量空间分布Fig. 11 Spatial distribution of soil volume water content under 5 cm·d-1 drip irrigation head |
图12 10 cm·d-1滴灌水头下土壤体积含水量空间分布Fig. 12 Spatial distribution of soil volume water content under 10 cm·d-1 drip irrigation head |
[1] |
胡广录. 干旱区绿洲水分生产率分布格局及影响因素研究[M]. 兰州: 甘肃人民出版社, 2011.
[
|
[2] |
陈海志, 胡广录, 李嘉楠, 等. 1967—2020年黑河中游绿洲气候变化对玉米产量的影响——以临泽县为例[J]. 甘肃农业大学学报, 2023, 58(2): 137-144, 154.
[
|
[3] |
杨那, 毛晓涵, 李彦, 等. 农田土壤有机碳及活性炭组分对秸秆和地膜覆盖响应的Meta分析[J]. 环境科学, 2025, 46(4): 2292-2300.
[
|
[4] |
郑浩飞, 逄蕾, 孙建好, 等. 玉米||豌豆间作体系生产力对覆膜方式及化肥施用量的响应[J]. 中国生态农业学报(中英文), 2024, 32(10): 1639-1649.
[
|
[5] |
乔毅博, 吴鹏年, 王艳丽, 等. 黄淮海平原微喷灌下冬小麦农田水分渗漏及氮素淋失模拟分析[J]. 农业环境科学学报, 2023, 42(7): 1540-1553.
[
|
[6] |
安宁, 郭彬, 张东梅, 等. 河西走廊中段荒漠植被组成及土壤养分空间分布特征[J]. 干旱区研究, 2024, 41(3): 432-443.
[
|
[7] |
李嘉楠, 周成乾, 胡广录, 等. 荒漠-绿洲过渡带典型固沙植物根区土壤大孔隙特征及影响因素[J]. 干旱区研究, 2024, 41(12): 2015-2026.
[
|
[8] |
陈彦四, 黄春林, 侯金亮, 等. 基于多时相Sentinel-2影像的黑河中游玉米种植面积提取研究[J]. 遥感技术与应用, 2021, 36(2): 324-331.
[
|
[9] |
胡广录, 陶虎, 焦娇, 等. 黑河中游正义峡径流变化趋势及归因分析[J]. 干旱区研究, 2023, 40(9): 1414-1424.
[
|
[10] |
有德宝, 王建林, 吕明强, 等. 基于Penman-Monteith法的黑河流域玉米农田蒸散特征研究[J]. 华北农学报, 2015, 30(S1): 139-145.
[
|
[11] |
贾昂元, 张勇勇, 赵文智, 等. 干旱区绿洲农田土壤大孔隙与水分入渗特征[J]. 土壤学报, 2022, 59(2): 486-497.
[
|
[12] |
马彬. 绿洲农田防护林系统水分利用效率遥感估算模型研究[D]. 石河子: 石河子大学, 2022.
[
|
[13] |
林鹏飞. 基于HYDRUS-MODFLOW模型干旱绿洲农田地表-地下水联合调控研究[D]. 兰州: 兰州大学, 2020.
[
|
[14] |
吴元芝, 黄明斌. 基于Hydrus-1D模型的玉米根系吸水影响因素分析[J]. 农业工程学报, 2011, 27(S2): 66-73.
[
|
[15] |
李东生, 吉喜斌, 赵丽雯. 黑河流域中游制种玉米农田土壤水分运移规律[J]. 干旱区研究, 2015, 32(3): 467-475.
[
|
[16] |
孙雪梅, 张毅敏, 张志伟, 等. 红壤区旱作花生地剖面氮素迁移转化模拟研究[J]. 农业环境科学学报, 2024, 43(7): 1557-1567.
[
|
[17] |
苗庆远, 米丽娜, 覃兰玉, 等. 基于HYDRUS-1D模型的荒漠苜蓿农田滴灌灌溉制度制定[J]. 灌溉排水学报, 2024, 43(5): 8-15.
[
|
[18] |
鲁睿, 张明军, 张宇, 等. 不同降雨量及雨强条件下兰州南山人工侧柏林土壤水分入渗规律[J]. 水土保持学报, 2024, 38(2): 364-376.
[
|
[19] |
郭珈玮, 周慧, 史海滨, 等. 基于HYDRUS-2D盐荒地干排盐作用模拟研究[J]. 灌溉排水学报, 2023, 42(S1): 206-212.
[
|
[20] |
|
[21] |
程国, 张楠, 张磊, 等. 基于HYDRUS-2D南疆矮砧密植苹果滴灌灌溉制度优化[J]. 节水灌溉, 2024(9): 121-128.
[
|
[22] |
鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000.
[
|
[23] |
高震国, 钟瑞林, 杨帅, 等. Hydrus模型在中国的最新研究与应用进展[J]. 土壤, 2022, 54(2): 219-231.
[
|
[24] |
|
[25] |
胡广录, 刘鹏, 李嘉楠, 等. 黑河中游绿洲边缘三种景观类型土壤水分动态特征及影响因素[J]. 干旱区研究, 2024, 41(4): 550-565.
[
|
[26] |
|
[27] |
|
[28] |
丁运韬, 程煜, 张体彬, 等. 利用HYDRUS-2D模拟膜下滴灌玉米农田深层土壤水分动态与根系吸水[J]. 干旱地区农业研究, 2021, 39(3): 23-32.
[
|
[29] |
肖庆礼. 黑河中游绿洲农田和防护林带土壤水分运动与水量交换[D]. 咸阳: 西北农林科技大学, 2016.
[
|
[30] |
梁昊枫, 党科, 范子晗, 等. 不同生态区覆盖方式对玉米氮转运、产量与水氮利用效率的影响[J]. 水土保持研究, 2024, 31(6): 176-187.
[
|
[31] |
吴普特, 冯浩. 中国节水农业发展战略初探[J]. 农业工程学报, 2005, 21(6): 152-157.
[
|
[32] |
付玉娟, 李尧, 喻浩洋, 等. Hydrus-2D模拟起垄覆膜处理对夏玉米生育期水量平衡的影响[J]. 农业工程学报, 2023, 39(10): 76-87.
[
|
[33] |
刘青松, 贾艳丽, 肖宇, 等. 河北省坝上地区青贮玉米旱作种植模式研究[J]. 中国草地学报, 2021, 43(10): 76-81.
[
|
[34] |
宋振伟, 郭金瑞, 邓艾兴, 等. 耕作方式对东北春玉米农田土壤水热特征的影响[J]. 农业工程学报, 2012, 28(16): 108-114.
[
|
[35] |
|
[36] |
|
[37] |
张疏影, 张金珠, 王振华, 等. 不同水氮配施对北疆膜下滴灌棉花生长发育的影响[J]. 排灌机械工程学报, 2024, 42(6): 641-648.
[
|
[38] |
|
[39] |
杨九刚, 何继武, 马英杰, 等. 灌水频率和灌溉定额对膜下滴灌棉花生长及产量的影响[J]. 节水灌溉, 2011(3): 29-32, 38.
[
|
[40] |
左顺利, 李丰琇, 刘泽龙, 等. 南疆覆膜滴灌夏玉米生长特性及产量对施氮量的响应研究[J]. 灌溉排水学报, 2024, 43(11): 18-26, 73.
[
|
[41] |
丁运韬, 程煜, 张体彬, 等. 滴灌灌水下限对夹砂层农田土壤水盐分布和玉米生长的影响[J]. 土壤学报, 2022, 59(3): 733-744.
[
|
[42] |
李嘉欣, 黄爽, 江振, 等. 基于HYDRUS-2D对浅埋膜下滴灌玉米农田土壤水盐运移规律研究[J/OL]. 节水灌溉, 1-18[2025-05-06]. http://kns.cnki.net/kcms/detail/42.1420.TV.20250408.1605.004.html.
|
[43] |
邓欢, 戴飞, 史瑞杰, 等. 基于HYDRUS-2D/3D的玉米全膜双垄沟水肥运移规律与根系响应[J]. 农业机械学报, 2022, 53(S2): 100-108.
[
|
[44] |
王田野, 王平, 吴泽宁, 等. 干旱胁迫下植被生态韧性研究进展[J]. 地球科学进展, 2023, 38(8): 790-801.
[
|
[45] |
庄淏然, 冯克鹏, 许德浩. 蒸散分离的玉米水分利用效率变化及影响因素[J]. 干旱区研究, 2023, 40(7): 1117-1130.
[
|
[46] |
王锐. 地膜覆盖对夏玉米农田水分转化过程及利用效率的影响[D]. 咸阳: 西北农林科技大学, 2022.
[
|
[47] |
石建周, 刘贤德, 田青, 等. 六盘山半干旱区华北落叶松林坡面土壤含水量的降雨响应[J]. 干旱区研究, 2023, 40 (4): 594-604.
[
|
[48] |
吉吉佳门, 程一本, 谌玲珑, 等. 科尔沁沙地樟子松人工林土壤水分动态及其对降雨的响应[J]. 干旱区研究, 2023, 40(5): 756-766.
[
|
/
〈 |
|
〉 |