Response of snowmelt over the Mongolian Plateau to air temperature
Received date: 2025-03-17
Revised date: 2025-05-09
Online published: 2025-08-13
Using MODIS snow product data, this study investigates the spatiotemporal variation characteristics of the snowmelt period over the Mongolian Plateau during the 2003-2022 hydrological years. The movement of the snowmelt line toward higher latitudes and its response to air temperature are tracked and analyzed at 15-day intervals. The results show that: (1) The proportion of snow-covered area to the total area of the Mongolian Plateau during the 2003-2022 hydrological years ranged from 55.59% to 87.61%, with the smallest snow cover in 2018 and the largest in 2009. Additionally, over the past 20 years, the snowmelt start time on the Mongolian Plateau exhibited a significant advancing trend at a rate of 0.18 days per decade (P<0.05), while the stable snow-cover area showed a delaying trend. (2) Spatially, snowmelt occurred significantly later in northern regions of the Mongolian Plateau compared to southern regions. Stable snow-cover areas were primarily concentrated in the western Mongolia and northeastern Inner Mongolia, where snowmelt times were generally later. Approximately 64.9% of these areas showed an advancing trend in snowmelt, while regions with delaying trends were mainly distributed in the northwestern part of the study area. (3) Observational analysis at half-monthly scales from January during the winter season revealed that the movement of the snowmelt line demonstrated successive synchronicity with the -5 ℃ and 0 ℃ isotherms. Correlation coefficients between snowmelt line positions and temperature, except for the year 2018 (with the least snow cover), generally fell within the higher range of 0.72 to 0.98, indicating that temperature is a key factor influencing the position of the snowmelt line.
Key words: snow end day; snow line; isotherm; temperature response; Mongolian Plateau
NIU Jin , LIU Yahong , Bao Gang , YUAN Zhihui , TONG Siqin , Chao buga . Response of snowmelt over the Mongolian Plateau to air temperature[J]. Arid Zone Research, 2025 , 42(7) : 1184 -1195 . DOI: 10.13866/j.azr.2025.07.03
图3 2003—2022年蒙古高原多年平均SED空间分布及对应的降雪频次(a~b)及2009年、2018年SED空间分布(c~d)和稳定积雪区多年平均SED及其变化趋势(e~f)Fig. 3 Spatial distribution of multi-year average SED and corresponding snowfall frequency (a-b) over the Mongolian Plateau from 2003 to 2022, spatial distributions of SED in 2009 and 2018 (c-d), and multi-year average SED and its variation trend in the stable snow-covered area (e-f) |
图4 20 a来蒙古高原每隔15 d的SED与-5 ℃和0 ℃等温线的空间分布特征(a~i)以及年累积降水(j)和SDD空间分布(k)Fig. 4 Spatial distribution characteristics of SED in the Mongolian Plateau over the past 20 years at 15-day intervals, along with the -5 ℃ and 0 ℃ isotherms (a-i), as well as the annual cumulative precipitation (j) and SDD spatial distribution (k) |
图5 每半月融雪线及0 ℃和-5 ℃等温线分别在纬度(a)及经度(b)上的移动Fig. 5 Movement of the snow-melt line, as well as the 0 ℃ and -5 ℃ isotherms, in latitude (a) and longitude (b) every half-month |
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
黄坤琳, 吴国周, 徐维新, 等. 呼伦贝尔东部农田区动态融雪过程及其影响因子[J]. 干旱区研究, 2024, 41(9): 1514-1526.
[
|
[17] |
肖雄新, 张廷军. 基于被动微波遥感的积雪深度和雪水当量反演研究进展[J]. 地球科学进展, 2018, 33(6): 590-605.
[
|
[18] |
张音, 孙从建, 刘庚, 等. 近20 a塔里木河流域山区NDSI对气候变化的响应[J]. 干旱区研究, 2024, 41(10): 1639-1648.
[
|
[19] |
李虹, 李忠勤, 陈普晨, 等. 近20 a新疆阿尔泰山积雪时空变化及其影响因素[J]. 干旱区研究, 2023, 40(7): 1040-1051.
[
|
[20] |
|
[21] |
|
[22] |
赵琴, 郝晓华, 和栋材, 等. 1980—2019 年北疆积雪时空变化与气候和植被的关系[J]. 遥感技术与应用, 2021, 36(6): 1247-1258.
[
|
[23] |
|
[24] |
颜伟, 刘景时, 罗光明, 等. 基于 MODIS 数据的 2000—2013 年西昆仑山玉龙喀什河流域积雪面积变化[J]. 地理科学进展, 2014, 33(3): 315-325.
[
|
[25] |
姜康, 包刚, 乌兰图雅, 等. 基于MODIS数据的蒙古高原积雪时空变化研究[J]. 干旱区地理, 2019, 42(4): 782-789.
[
|
[26] |
刘钟龄. 蒙古高原景观生态区域的分析[J]. 干旱区资源与环境, 1993, 7(Z1): 256-261.
[
|
[27] |
薛浩, 于瑞宏, 张艳霞, 等. 内蒙古典型草原区流域在不同时间尺度下的径流深动态变化——以锡林河流域为例[J]. 中国水土保持科学, 2019, 17(2): 27-36.
[
|
[28] |
高彦哲. 2000—2020 年蒙古高原湖泊面积变化分析[D]. 呼和浩特: 内蒙古师范大学, 2023.
[
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
张港栋. 蒙古高原积雪区植被物候和积雪物候时空差异及其对气温响应[D]. 呼和浩特: 内蒙古师范大学, 2024.
[
|
[37] |
元志辉. 欧亚草原积雪动态及其对春季物候的影响研究[D]. 呼和浩特: 内蒙古师范大学, 2024.
[
|
[38] |
|
[39] |
张廷军, 钟歆玥. 欧亚大陆积雪分布及其类型划分[J]. 冰川冻土, 2014, 36(3): 481-490.
[
|
[40] |
孙慧, 萨楚拉, 孟凡浩, 等. 2000—2020年蒙古高原积雪覆盖率时空变化及其影响因素分析[J]. 赤峰学院学报(自然科学版) 2022, 38(11): 1-6.
[
|
[41] |
李晨昊, 萨楚拉, 刘桂香, 等. 2000—2017年蒙古高原积雪时空变化及其对气候响应研究[J]. 中国草地学报, 2020, 42(2): 95-104.
[
|
[42] |
赵晓萌, 李栋梁, 陈光宇. 基于GIS的东北及邻近地区积雪深度空间化方法[J]. 干旱区研究, 2012, 29(6): 927-933.
[
|
[43] |
李培基. 新疆积雪对气候变暖的响应[J]. 气象学报, 2001, 59(4): 491-501.
[
|
[44] |
张人禾, 张若楠, 左志燕. 中国冬季积雪特征及欧亚大陆积雪对中国气候影响[J]. 应用气象学报, 2016, 27(5): 513-526.
[
|
/
〈 |
|
〉 |