Hydrochemical properties and genetic mechanisms of high-fluoride groundwater in the Irtysh River Basin Plain, Xinjiang
Received date: 2024-05-26
Revised date: 2024-08-14
Online published: 2025-08-12
In this study, we explored the chemical control factors influencing groundwater and the causes of high-fluoride concentrations in the Irtysh River Basin plain, Xinjiang. In 2018, 70 groundwater samples were collected to analyze the spatial distribution characteristics of hydrochemical components and fluoride. The mechanisms behind the formation and enrichment of the high-fluoride water were also examined. Using an absolute factor analysis-multiple linear regression model (APCS-MLR), we quantitatively assessed the contributions of various factors to the hydrochemical components of groundwater in the basin. The results show the following: (1) The groundwater in the study area is generally neutral and slightly alkaline. The north of the Irtysh River is dominated by fresh water, while the south is dominated by brackish water. The rates of fluoride exceedance in the north and south of the Irtysh River are 27.91% and 44.44%, respectively. The primary chemical type of groundwater in both areas is HCO3·SO4-Na·Ca type. (2) The results of the SOM analysis suggest that fluoride may be derived from fluorine-containing minerals mixed with various elements. The APCS-MLR model indicates that the formation of groundwater chemical components in the study area is mainly affected by leaching enrichment (58.03%), groundwater pH (16.28%), and the primary geological environment (10.28%). (3) The primary factors influencing the formation of high-fluoride groundwater include mineral dissolution and precipitation, evaporation and concentration, rock weathering, and cation exchange. Additionally, the groundwater environment, climatic factors, topography, and human activities significantly contribute to the enrichment of high-fluoride groundwater.
Key words: groundwater; hydrochemistry; fluorine enrichment; Irtysh River Basin Plain
ZHENG Yu , SUN Ying , ZHOU Jinlong , LI Ruyue . Hydrochemical properties and genetic mechanisms of high-fluoride groundwater in the Irtysh River Basin Plain, Xinjiang[J]. Arid Zone Research, 2024 , 41(12) : 2056 -2070 . DOI: 10.13866/j.azr.2024.12.08
表1 额河地下水中主要化学成分参数统计Tab. 1 Statistical value of main chemical composition parameters in groundwater of Irtysh River |
参数 | pH值 | TH | TDS | K+ | Na+ | Ca2+ | Mg2+ | Cl- | SO42- | HCO3- | F- | Eh /mV | EC /(μS·cm-1) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
/(mg·L-1) | ||||||||||||||
额河以北浅层地下水 | 最小值 | 7.09 | 120.20 | 189.00 | 0.37 | 3.69 | 29.60 | 5.11 | 5.50 | 22.42 | 146.68 | 0.22 | -38.50 | 361.00 |
最大值 | 8.22 | 1206.68 | 5668.00 | 58.72 | 1408.20 | 338.46 | 88.05 | 623.51 | 2754.53 | 591.55 | 2.23 | 237.80 | 5980.00 | |
中间值 | 7.55 | 400.19 | 798.00 | 4.60 | 108.60 | 118.72 | 21.60 | 58.27 | 263.91 | 285.26 | 0.80 | 173.90 | 971.00 | |
Cv/% | 3.94 | 52.88 | 101.16 | 140.23 | 148.99 | 54.76 | 70.91 | 128.78 | 140.03 | 34.44 | 55.15 | 40.19 | 85.49 | |
超标率/% | 0.00 | 25.71 | 28.57 | - | 20.00 | - | - | 5.71 | 54.29 | - | 25.71 | - | - | |
额河以北中层地下水 | 最小值 | 7.29 | 146.31 | 180.00 | 1.20 | 9.53 | 45.62 | 7.83 | 9.76 | 23.37 | 141.13 | 0.33 | 97.50 | 240.00 |
最大值 | 7.92 | 932.79 | 1474.00 | 5.19 | 95.71 | 299.42 | 45.05 | 111.48 | 413.71 | 447.42 | 0.52 | 198.80 | 1652.00 | |
中间值 | 7.90 | 274.32 | 352.00 | 4.50 | 25.37 | 90.53 | 11.74 | 13.87 | 51.30 | 261.24 | 0.50 | 196.60 | 489.00 | |
Cv/% | 4.64 | 93.54 | 105.09 | 58.75 | 105.36 | 93.29 | 94.96 | 127.85 | 133.67 | 54.48 | 23.20 | 35.22 | 94.96 | |
超标率/% | 0.00 | 33.33 | 33.33 | - | 0 | - | - | 0 | 33.33 | - | 0 | - | - | |
额河以北深层地下水 | 最小值 | 7.64 | 43.93 | 310.00 | 0.52 | 26.15 | 9.58 | 4.70 | 15.04 | 63.38 | 108.10 | 0.75 | 45.50 | 412.00 |
最大值 | 8.21 | 256.04 | 462.00 | 1.80 | 132.40 | 88.57 | 13.52 | 108.62 | 106.66 | 195.18 | 1.26 | 243.40 | 612.00 | |
中间值 | 7.99 | 169.98 | 328.00 | 0.85 | 56.75 | 49.41 | 10.64 | 16.14 | 87.76 | 184.67 | 1.12 | 193.50 | 520.00 | |
Cv/% | 2.60 | 55.16 | 18.14 | 49.21 | 64.11 | 69.90 | 34.28 | 97.70 | 21.66 | 24.68 | 18.64 | 48.01 | 15.84 | |
超标率/% | 0.00 | 0 | 0 | - | 0 | - | - | 0 | 0 | - | 60.00 | - | - | |
额河以南浅层地下水 | 最小值 | 6.50 | 76.22 | 314.00 | 0.79 | 28.32 | 16.37 | 8.47 | 19.37 | 101.33 | 75.07 | 0.38 | 75.30 | 567.00 |
最大值 | 8.24 | 6718.16 | 35776.0 | 86.82 | 10080.0 | 1259.77 | 1008.52 | 17227.2 | 4403.05 | 415.60 | 3.84 | 196.70 | 2800.00 | |
中间值 | 7.52 | 603.99 | 1224.00 | 11.112 | 158.00 | 185.87 | 32.87 | 117.80 | 469.71 | 268.00 | 0.98 | 154.80 | 1132.00 | |
Cv/% | 6.72 | 156.25 | 230.34 | 124.22 | 275.52 | 117.15 | 237.58 | 318.47 | 130.70 | 42.80 | 75.75 | 20.57 | 253.62 | |
超标率 | 0.00 | 61.11 | 66.67 | - | 33.33 | - | - | 27.78 | 72.22 | - | 44.44 | - | - | |
额河以南中层地下水 | 最小值 | 6.74 | 90.44 | 138.00 | 0.91 | 13.60 | 32.59 | 2.08 | 3.25 | 35.82 | 90.08 | 0.24 | 120.50 | 270.00 |
最大值 | 8.08 | 1467.30 | 3689.66 | 33.80 | 638.98 | 401.12 | 113.13 | 606.84 | 1604.52 | 451.05 | 1.67 | 158.10 | 911.00 | |
中间值 | 7.74 | 156.33 | 598.00 | 1.07 | 145.20 | 40.27 | 13.74 | 103.84 | 200.81 | 105.10 | 1.26 | 139.30 | 590.50 | |
Cv/% | 9.26 | 135.92 | 130.93 | 158.83 | 123.98 | 133.29 | 141.98 | 135.89 | 140.46 | 94.80 | 69.76 | 19.09 | 76.76 | |
超标率/% | 0.00 | 33.33 | 33.33 | - | 33.33 | - | - | 33.33 | 33.33 | - | 66.67 | - | - | |
额河以南深层地下水 | 最小值 | 7.07 | 15.50 | 136.00 | 0.36 | 49.51 | 3.27 | 1.89 | 7.84 | 28.09 | 97.79 | 0.20 | 120.10 | 214.90 |
最大值 | 8.37 | 939.90 | 1690.00 | 19.07 | 330.50 | 281.72 | 57.40 | 373.71 | 654.68 | 363.34 | 1.62 | 1252.00 | 1955.00 | |
中间值 | 7.65 | 333.84 | 1120.00 | 3.92 | 177.97 | 81.76 | 27.50 | 134.75 | 318.05 | 171.91 | 0.84 | 165.00 | 1252.00 | |
Cv/% | 5.90 | 79.47 | 51.19 | 122.93 | 52.64 | 90.17 | 61.11 | 88.69 | 60.88 | 56.66 | 53.52 | 135.15 | 54.72 | |
超标率/% | 0.00 | 33.33 | 66.67 | - | 33.33 | - | - | 33.33 | 83.33 | - | 33.33 | - | - |
注:pH值无量纲,TH表示总硬度,TDS表示总溶解性固体,“-”表示《地下水质量标准》(G/T 14848-2017)中无此项标准。 |
图4 相关性分析及因子贡献注:*表示P≤0.05;**表示P≤0.01;***表示P≤0.001。 Fig. 4 Correlation analysis and factor contribution |
表2 公因子特征值和成分矩阵Tab. 2 Common factor eigenvalues and component matrices |
解释的总方差 | 旋转成分矩阵 | ||||||||
---|---|---|---|---|---|---|---|---|---|
公因子 | 化学指标 | 初始特征值 | 化学指标 | 公因子 | |||||
合计 | 方差贡献率/% | 累计贡献率/% | 1 | 2 | 3 | ||||
1 | pH | 6.964 | 58.03 | 58.030 | pH | 0.161 | -0.838 | 0.178 | |
2 | TDS | 1.954 | 16.279 | 74.309 | TDS | 0.996 | -0.054 | -0.032 | |
3 | Ca2+ | 1.234 | 10.282 | 84.591 | Ca2+ | 0.956 | 0.155 | -0.005 | |
4 | K+ | 0.856 | 7.135 | 91.726 | K+ | 0.52 | 0.556 | 0.114 | |
5 | Na+ | 0.583 | 4.856 | 96.582 | Na+ | 0.991 | -0.092 | -0.039 | |
6 | Mg2+ | 0.257 | 2.145 | 98.727 | Mg2+ | 0.991 | -0.049 | -0.057 | |
7 | Cl- | 0.090 | 0.751 | 99.478 | Cl- | 0.982 | -0.11 | -0.083 | |
8 | SO42- | 0.058 | 0.486 | 99.965 | SO42- | 0.911 | 0.053 | 0.147 | |
9 | HCO3- | 0.002 | 0.018 | 99.983 | HCO3- | -0.082 | 0.862 | 0.308 | |
10 | F- | 0.002 | 0.016 | 99.999 | F- | -0.07 | -0.142 | 0.892 | |
11 | EC | 0.000 | 0.001 | 100.000 | EC | 0.993 | -0.064 | -0.047 | |
12 | Eh | 0.000 | 0.000 | 100.000 | Eh | -0.021 | -0.232 | -0.578 |
注:加粗数值表示指标在因子上的最高载荷值。 |
[1] |
白凡, 周金龙, 曾妍妍. 吐鲁番盆地平原区地下水水化学特征及水质评价[J]. 干旱区研究, 2022, 39(2): 419-428.
[
|
[2] |
康文辉, 周殷竹, 孙英, 等. 新疆玛纳斯河流域地下水砷氟分布及共富集成因[J]. 干旱区研究, 2023, 40(9): 1425-1437.
[
|
[3] |
|
[4] |
|
[5] |
李巧. 准噶尔盆地平原区地下水水质时空演化研究[D]. 乌鲁木齐: 新疆农业大学, 2014.
[
|
[6] |
|
[7] |
毛若愚, 郭华明, 贾永锋, 等. 内蒙古河套盆地含氟地下水分布特点及成因[J]. 地学前缘, 2016, 23(2): 260-268.
[
|
[8] |
|
[9] |
|
[10] |
|
[11] |
时雯雯, 周金龙, 曾妍妍, 等. 和田地区地下水中氟的分布特征及形成过程[J]. 干旱区研究, 2022, 39(1): 155-164.
[
|
[12] |
|
[13] |
晏婴. 北京东南部地区第四系地下水氟离子富集研究[D]. 长春: 吉林大学, 2016.
[
|
[14] |
吕晓立, 刘景涛, 周冰, 等. 塔城盆地地下水氟分布特征及富集机理[J]. 地学前缘, 2021, 28(2): 426-436.
[
|
[15] |
|
[16] |
张人权, 梁杏, 靳孟贵, 等. 水文地质学基础[M]. 第七版. 北京: 地质出版社, 2018.
[
|
[17] |
韦虹, 吴锦奎, 沈永平, 等. 额尔齐斯河源区融雪期积雪与河流的水化学特征[J]. 环境科学, 2016, 37(4): 1345-1352.
[
|
[18] |
张晓敏, 张东梅, 张伟. 人类活动对额尔齐斯河流域碳储量的影响[J]. 干旱区研究, 2023, 40(8): 1333-1345.
[
|
[19] |
夏自强, 黄峰, 郭利丹. 额尔齐斯河流域水文地理特征分析及人类活动影响研究[M]. 北京: 中国水利水电出版社, 2015.
[
|
[20] |
新疆维吾尔自治区国土资源厅. 新疆维吾尔自治区环境地质图集[R]. 乌鲁木齐: 新疆维吾尔自治区国土资源厅, 2005.
[Department of Land and Resources of Xinjiang Uygur Autonomous Region. Environmental Geological Atlas of Xinjiang Uygur Autonomous Region[R]. Urumqi: Department of Land and Resources of Xinjiang Uygur Autonomous Region, 2005. ]
|
[21] |
涂治. 准噶尔盆地绿洲带地下水优先控制污染物的识别与影响因素研究[D]. 乌鲁木齐: 新疆农业大学, 2023.
[
|
[22] |
梁潇丹. 新疆阿勒泰铜金多金属资源基地矿山地质环境综合评价与治理恢复研究[D]. 西安: 长安大学, 2020.
[
|
[23] |
|
[24] |
|
[25] |
|
[26] |
丁启振, 周殷竹, 周金龙, 等. 新疆东部平原区地下水无机污染物空间分布、源解析及健康风险评价[J/OL]. 地球科学, 2023, 1-16. doi: 42.1874.P.20230801.1722.004.html.
[
|
[27] |
|
[28] |
刘金宇, 舒启海, 张为, 等. 岩浆热液系统氟的富集与成矿[J]. 岩石学报, 2024, 40(6): 1943-1958.
[
|
[29] |
康文辉, 周殷竹, 雷米, 等. 新疆玛纳斯河流域地下水砷氟碘分布及共富集成因[J]. 中国环境科学, 2024, 44(7): 3832-3842.
[
|
[30] |
张杰, 周金龙, 乃尉华, 等. 叶尔羌河流域平原区高氟地下水成因分析[J]. 干旱区资源与环境, 2020, 34(4): 100-106.
[
|
[31] |
林重阳. 漳卫河流域地下水的水化学特征和高氟地下水的形成[D]. 北京: 中国地质大学, 2020.
[
|
[32] |
|
[33] |
王鸿. 北屯市土地利用与景观生态格局分析[D]. 西安: 西北大学, 2014.
[
|
[34] |
姜凤, 周金龙, 周殷竹, 等. 巴伊盆地平原区地下水水化学特征及污染源识别[J]. 环境科学, 2023, 44(11): 6050-6061.
[
|
[35] |
|
[36] |
孙英. 塔里木盆地绿洲带地下水碘的来源与富集机理研究[D]. 乌鲁木齐: 新疆农业大学, 2022.
[
|
[37] |
孙英, 周金龙, 杨方源, 等. 塔里木盆地南缘绿洲带地下水砷氟碘分布及共富集成因[J]. 地学前缘, 2022, 29(3): 99-114.
[
|
[38] |
邓远东, 冶雪艳, 吴亚敏, 等. 松嫩平原西部地下水氟和砷的富集机理与动态变化特征[J]. 中国环境科学, 2023, 43(10): 5277-5290.
[
|
[39] |
邹嘉文, 刘飞, 张靖坤. 南水北调典型受水区浅层地下水水化学特征及成因[J]. 中国环境科学, 2022, 42(5): 2260-2268.
[
|
[40] |
王平顺, 苗新岳, 燕亚平, 等. 内蒙古伊敏盆地地下水水化学特征及其成因[J]. 干旱区研究, 2024, 41(3): 411-420.
[
|
[41] |
|
[42] |
张文琦, 董少刚, 马铭言, 等. 岱海盆地地下水化学特征及成因[J]. 干旱区研究, 2021, 38(6): 1546-1555.
[
|
[43] |
|
[44] |
|
[45] |
|
[46] |
|
[47] |
赵增锋, 王楚尤, 邱小琮, 等. 宁夏清水河流域地表水水化学特征及高氟水成因机制[J/OL]. 地学前缘, 1-14. doi: 10.13745/j.esf.sf.2023.12.36.
[
|
[48] |
刘峰, 李忠勤, 郝嘉楠, 等. 额尔齐斯河源春季水化学及稳定同位素特征研究[J]. 冰川冻土, 2020, 42(1): 234-242.
[
|
[49] |
刘海, 康博, 管政亭, 等. 淮南煤矿区地表水和地下水水化学特征及控制因素[J]. 环境科学, 2023, 44(11): 6038-6049.
[
|
[50] |
新疆维吾尔自治区国土资源厅. 新疆维吾尔自治区矿产开发简明图集[R]. 乌鲁木齐: 新疆维吾尔自治区国土资源厅, 2004.
[Department of Land and Resources of Xinjiang Uygur Autonomous Region. Concise Atlas of Mineral Development in Xinjiang Uygur Autonomous Region[R]. Urumqi: Department of Land and Resources of Xinjiang Uygur Autonomous Region, 2004. ]
|
/
〈 |
|
〉 |