Effect of soil temperature on cotton growth under phosphate fertilizer drip application conditions
Received date: 2024-10-24
Revised date: 2024-11-29
Online published: 2025-08-12
This study examines cotton growth affected by soil temperature under the condition of phosphate fertilizer drip application. It also explores the role and mechanism of soil temperature regulation of cotton root growth on improving the utilization rate of cotton phosphate fertilizer. Using potted tests, three soil temperature gradients were examined: low temperature (LT: 11-18 ℃), medium temperature (MT: 22-26 ℃), and high temperature (HT: 30-34 ℃). Single factor testing with water bath temperature control was utilized. The effects of various soil temperatures on the growth traits, biomass, root distribution, effective soil phosphorus distribution, and phosphate utilization efficiency in cotton were assessed. As soil temperature increased, cotton plant height, stem thickness, leaf number and biomass all showed parabolic changes that peaked in the medium temperature (22-26 ℃) group. Additionally, root length in the 0 to 5 cm soil layer increased with soil temperature, most notably with high temperature treatment, followed by low temperature and medium temperature treatments increasing by 5.2%-126.9% and 4.9%-62.3%, respectively. Below the 5 cm soil layer, root length decreased with increasing temperature, with the medium temperature treatment having the longest root length, 81.68%-98.43%, which was 170.17%-218.35% longer than the low temperature and high temperature treatment, respectively. The effective P content of each treatment increased with lower temperatures, with the medium and high temperature treatment content being 13.7% and 20.5% lower than the low temperature treatment, respectively. Phosphorus absorption and phosphate utilization were maximized in the medium temperature cotton, followed by the low temperature cotton. With the lowest high temperature, the total phosphorus absorption in the medium temperature cotton increased relatively by 49.69% and 89.36% compared with low temperature and high temperature treatments, respectively. Furthermore, the phosphate utilization rate was twice and 50% higher than the high and low temperature treatments, respectively. These findings indicate that based on the effects of soil temperature on cotton growth, root and soil effective phosphorus distribution, phosphorus absorption, and phosphate utilization, the most suitable soil temperature for cotton growth is 22-26 ℃.
WANG Yiqi , MAI Wenxuan , ZHANG Wentai , WANG Yanyan , TIAN Changyan . Effect of soil temperature on cotton growth under phosphate fertilizer drip application conditions[J]. Arid Zone Research, 2025 , 42(6) : 1151 -1158 . DOI: 10.13866/j.azr.2025.06.17
表1 不同温度对棉花磷素吸收量及磷肥利用率的影响Tab. 1 Effects of different treatments on phosphate absorption and phosphate fertilizer utilization in cotton |
根/g | 茎/g | 叶/g | 合计/g | 磷素利用率 /(kg·kg-1) | |
---|---|---|---|---|---|
低温 | 2.27±0.52ab | 1.73±0.71b | 2.54±0.61b | 6.54±0.89b | 0.08±0.01b |
中温 | 3.08±0.84a | 3.30±0.35a | 3.42±0.48a | 9.79±1.17a | 0.12±0.01a |
高温 | 1.98±0.54b | 1.34±0.34b | 1.85±0.64b | 5.17±1.01c | 0.06±0.01c |
注:不同小写字母表示处理间差异显著(P<0.05)。 |
[1] |
新疆棉花总产量连续29年居全国首位[N]. 新疆日报, 2023-12-26.
[Xinjiang’s Total Cotton Output has Ranked First in China for 29 Consecutive Years[N]. Xinjiang Daily, 2023-12-26.]
|
[2] |
王进, 白洁, 罗格平, 等. 近34年玛纳斯河流域棉花生长和耗水特征研究[J]. 农业机械学报, 2015, 46(8): 88-94.
[
|
[3] |
王肖娟, 危常州, 张君, 等. 灌溉方式和施氮量对棉田氮肥利用率及损失的影响[J]. 应用生态学报, 2012, 23(10): 2751-2758.
[
|
[4] |
|
[5] |
|
[6] |
李青军, 张炎, 哈丽哈什·依巴提, 等. 漫灌和滴灌棉花土壤有效磷丰缺指标与临界值研究[J]. 植物营养与肥料学报, 2018, 24(4): 927-934.
[
|
[7] |
尹飞虎, 康金花, 黄子蔚, 等. 棉花滴灌随水施滴灌专用肥中磷素的移动和利用率的32P研究[J]. 西北农业学报, 2005, 14(6): 199-206.
[
|
[8] |
张国桥, 王静, 刘涛, 等. 水肥一体化施磷对滴灌玉米产量、磷素营养及磷肥利用效率的影响[J]. 植物营养与肥料学报, 2014, 20(5): 1103-1109.
[
|
[9] |
杨国江, 彭懿, 尹飞虎, 等. 滴灌磷肥在灰漠土中运移的研究[J]. 中国土壤与肥料, 2020(6): 138-146.
[
|
[10] |
白灯莎·买买提艾力, 孙良斌, 张少民, 等. 双膜覆盖对盐碱地棉花出苗及产量的影响[J]. 中国棉花, 2013, 40(1): 26-29.
[
|
[11] |
胡明芳, 田长彦. 新疆棉田地膜覆盖耕层土壤温度效应研究[J]. 中国生态农业学报, 2003, 11(3): 128-130.
[
|
[12] |
|
[13] |
|
[14] |
|
[15] |
何静, 王振华, 刘健, 等. 灌溉水温与施氮量对滴灌棉田土壤水热及棉花生长和产量的影响[J]. 中国农业科学, 2024, 57(2): 319-335.
[
|
[16] |
黄明泉. 典型地段思茅松天然林生物量分配的比较分析及环境解释[D]. 昆明: 西南林业大学, 2018.
[
|
[17] |
|
[18] |
|
[19] |
王振华, 武小荻, 王天宇, 等. 灌溉时段及水温对膜下滴灌棉花生长及产量的影响[J]. 排灌机械工程学报, 2022, 40(10): 1040-1047.
[
|
[20] |
史普想, 刘盈茹, 张晓军, 等. 低温水灌溉对花生根际土壤酶活性和养分含量的影响[J]. 中国油料作物学报, 2016, 38(6): 811-816.
[
|
[21] |
杨威, 朱建强, 吴启侠, 等. 涝害和高温下棉花苗期的生长生理代谢特征[J]. 农业工程学报, 2015, 31(22): 98-104.
[
|
[22] |
马晓昕, 李成林, 张超, 等. 高温胁迫影响棉花生长及产量品质的生理与分子机理[J]. 中国棉花, 2021, 48(12): 1-6, 12.
[
|
[23] |
丁宇. 干播湿出水分调控对土壤根域环境及棉株生长特征影响研究[D]. 乌鲁木齐: 新疆农业大学, 2023.
[
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
文卿琳, 王兴鹏. 温度对棉花种子萌发的影响[J]. 安徽农业科学, 2008(9): 3513-3515.
[
|
[37] |
赵红华. 滴灌条件下土壤酸化对石灰性土壤磷锌有效性影响及其生物效应[D]. 石河子: 石河子大学, 2015.
[
|
[38] |
陈波浪, 盛建东, 蒋平安, 等. 不同质地棉田土壤对磷吸附与解吸研究[J]. 土壤通报, 2010, 41(2): 303-307.
[
|
[39] |
|
[40] |
廖红, 严小龙. 菜豆根构型对低磷胁迫的适应性变化及基因型差异[J]. 植物学报, 2000, 42(2): 158-163.
[
|
[41] |
李俊义, 刘荣荣, 王润珍. 新疆棉区棉花氮肥适宜用量和施用时期研究[J]. 中国棉花, 1999, 26(4): 24-26.
[
|
[42] |
简红忠, 杨小敏, 王琳, 等. 磷肥施用对汉中盆地水稻生长、肥料利用率及土壤磷素平衡的影响[J]. 陕西农业科学, 2019, 65(10): 62-65.
[
|
[43] |
段刚强, 杨恒山, 张玉芹, 等. 提高玉米磷肥利用率的研究进展[J]. 中国农学通报, 2015, 31(21): 24-29.
[
|
[44] |
夏镇卿, 路海东. 土壤温度对作物根区环境及玉米根冠生长的调控研究进展[J]. 玉米科学, 2020, 28(3): 99-104.
[
|
/
〈 |
|
〉 |