Agricultural Ecology

Effect of soil temperature on cotton growth under phosphate fertilizer drip application conditions

  • WANG Yiqi , 1, 2 ,
  • MAI Wenxuan 2 ,
  • ZHANG Wentai , 1 ,
  • WANG Yanyan 2 ,
  • TIAN Changyan 2
Expand
  • 1. College of Environment and Resources, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, China
  • 2. Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, Xinjiang, China

Received date: 2024-10-24

  Revised date: 2024-11-29

  Online published: 2025-08-12

Abstract

This study examines cotton growth affected by soil temperature under the condition of phosphate fertilizer drip application. It also explores the role and mechanism of soil temperature regulation of cotton root growth on improving the utilization rate of cotton phosphate fertilizer. Using potted tests, three soil temperature gradients were examined: low temperature (LT: 11-18 ℃), medium temperature (MT: 22-26 ℃), and high temperature (HT: 30-34 ℃). Single factor testing with water bath temperature control was utilized. The effects of various soil temperatures on the growth traits, biomass, root distribution, effective soil phosphorus distribution, and phosphate utilization efficiency in cotton were assessed. As soil temperature increased, cotton plant height, stem thickness, leaf number and biomass all showed parabolic changes that peaked in the medium temperature (22-26 ℃) group. Additionally, root length in the 0 to 5 cm soil layer increased with soil temperature, most notably with high temperature treatment, followed by low temperature and medium temperature treatments increasing by 5.2%-126.9% and 4.9%-62.3%, respectively. Below the 5 cm soil layer, root length decreased with increasing temperature, with the medium temperature treatment having the longest root length, 81.68%-98.43%, which was 170.17%-218.35% longer than the low temperature and high temperature treatment, respectively. The effective P content of each treatment increased with lower temperatures, with the medium and high temperature treatment content being 13.7% and 20.5% lower than the low temperature treatment, respectively. Phosphorus absorption and phosphate utilization were maximized in the medium temperature cotton, followed by the low temperature cotton. With the lowest high temperature, the total phosphorus absorption in the medium temperature cotton increased relatively by 49.69% and 89.36% compared with low temperature and high temperature treatments, respectively. Furthermore, the phosphate utilization rate was twice and 50% higher than the high and low temperature treatments, respectively. These findings indicate that based on the effects of soil temperature on cotton growth, root and soil effective phosphorus distribution, phosphorus absorption, and phosphate utilization, the most suitable soil temperature for cotton growth is 22-26 ℃.

Cite this article

WANG Yiqi , MAI Wenxuan , ZHANG Wentai , WANG Yanyan , TIAN Changyan . Effect of soil temperature on cotton growth under phosphate fertilizer drip application conditions[J]. Arid Zone Research, 2025 , 42(6) : 1151 -1158 . DOI: 10.13866/j.azr.2025.06.17

新疆是我国最大的棉花生产基地,2023年新疆棉花总产量5.1×106 t,占全国九成以上[1]。当前,新疆超过60%的棉田采用膜下滴灌的水肥一体化技术体系,由于能根据棉花的需求适时适量供应水、肥(特别是氮肥),该技术的应用极大地提高了棉花生产的水(由0.4 kg·m-3到0.7 kg·m-3[2]、氮效率(由26%到40%)[3]。但与传统基施磷肥相比,滴施磷肥仅使棉花磷肥利用率提高了2%~5% [4~8],并没有改变磷肥利用率偏低的现状。这意味着即使是在容易实现人工干预水肥供应与作物需求耦合关系的水肥一体化生产体系中,提高作物当季磷肥利用率依然是一个十分复杂、难度很大的科学和技术问题。
磷肥随水滴施进入土壤后,垂直移动距离非常有限。一系列采用32P同位素示踪技术的室内模拟试验发现[7-9],滴施磷肥在土壤中的移动距离一般不超过5 cm,90%以上的磷素累积在土壤表层0~2 cm范围内。另一方面,新疆采用的膜下滴灌技术中由于覆膜造成的地温升高,特别是在田间完全封垄之前,0~5 cm土层是一个温度变化剧烈、对植物侧根生长以及磷吸收有强烈影响的区域。棉田定点观测表明,地膜覆盖条件下苗期至现蕾期(5—6月)0~5 cm土层的温度在下午高达34 ℃,日最低和最高温度变化范围13~34 ℃;个别地点在6月初(棉花现蕾之前)的地表温度最高达42 ℃[10-11]。而植物根系生长的最适土壤温度为18 ℃左右,高于此临界值即会对其生长产生抑制作用[12]。显然5月下旬至6月初的0~5 cm土层温度远高于根系生长临界值,而这一时期也正好是棉花根系系统建成的关键时期(根长快速增加期)。因此滴施磷肥条件下棉花根系与磷肥分布在空间上的不匹配是导致滴施磷肥利用率不高的根本原因[13-14],而土壤温度变化在其中起着非常重要的作用。
基于此,本研究以滴施磷肥棉花为研究对象,采用盆栽试验方法,设置不同的土壤温度,研究土壤温度对滴灌棉花生长和磷肥利用率的影响,探究适宜滴灌棉花生长和提高滴施磷肥利用率的土壤温度范围,为新疆地区棉花高产和养分高效提供理论依据。

1 材料与方法

1.1 材料

本研究采用盆栽试验方法进行,供试土壤为灰漠土,其基本理化性状为:pH 7.76,有效磷83.7 mg·kg-1,速效氮115 mg·kg-1,速效钾378 mg·kg-1。土壤风干后过5 mm筛备用。供试棉花品种为酒棉16号;土壤温度监测采用直角地温计进行;试验盆采用底部无排水孔的PP塑料软质育苗盆;滴灌装置采用250 mL可控制流速的医用输液瓶。

1.2 试验设计

试验于2023年5—7月在新疆克拉玛依盐生植物园网室(45°26′26″N,85°00′39″E)进行。试验设土壤温度一个因素,三个梯度,分别为低温(LT:11~18 ℃)、中温(MT:22~26 ℃)和高温(HT:30~34 ℃),每个处理重复5次,共计15盆。土壤温度通过水浴锅加热结合冰块添加调控,采用地温计监测(图1a)。每盆装填1.2 kg风干土,其中,氮肥以尿素(CH4N2O)为基肥,每盆施用0.6 g,与风干土混合均匀后一并装入试盆,初始浇水量为600 mL,达田间持水量的80%。棉花采用直播模式,将5粒种子播于花盆中央,待长至3片真叶时,每盆定苗一株,并将试盆移至水浴锅,水温调至各处理所设温度开始正式处理。同时安装滴灌装置,并确保滴头位于试盆中央。磷肥以磷酸二氢铵(NH4H2PO4)形式通过滴灌施入土壤,每盆施用量为0.6 g。其中,滴灌水量以重量法控制,根据试验环境条件,每3 d定时补水,使土壤含水量维持在田间持水量的60%。正式处理共持续40 d。
图1 试验装置

Fig. 1 Device used in the experiment

1.3 样品采集与分析

土壤采用分层切割法,每1 cm一层,共10层(图1b)。每层土壤中的棉花根系用镊子挑出,蒸馏水洗净,使用Phantom 9980XL扫描仪扫描棉花根长。同时采集每层土壤样品,风干、磨碎过1 mm筛;采用NaHCO3浸提-钼锑抗比色法测定土壤有效磷含量。棉花地上部在完成株高、茎粗测量及叶片计数后,分为茎、叶两部分,分别称鲜重后置于105 ℃的烘箱杀青30 min,然后在75 ℃下烘干48 h,称干重,粉碎,采用H2SO4-H2O2消煮,钒钼黄比色法测定磷含量。

1.4 数据处理

采用单因素方差分析(ANOVA)和最小显著差异检验(LSD)分析的多重比较方法。土壤磷素空间分布图用Surfer 21软件绘制。所有统计分析均采用Microsoft Excel和SPSS 29.0软件(IBM Corp. Armonk,NY,USA)进行。

2 结果与分析

2.1 土壤温度对棉花生长性状的影响

图2可知,中温处理下棉花生长的最好,与高温、低温处理相比,其中株高(图2a)分别高出73.85%、29.86%。茎粗(图2b)分别高3.61%和17.06%。叶片数(图2c)分别多16.98%和72.22%。总根长(图2d)分别高49.77%、28.62%。
图2 土壤温度对棉花生长性状的影响

注:不同小写字母表示处理间差异显著(P<0.05)。下同。

Fig. 2 Effect of soil temperature on cotton growth traits

2.2 土壤温度对棉花生物量及其分配的影响

图3可知,中温处理棉花生物量最大,低温次之,高温最小。其中根生物量分配(图3a)处于30%~40%,随地表温度升高呈现持续增加趋势。茎生物量分配(图3b)处于20%~30%,低温和中温处理差异很小,高温处理最少。叶片生物量分配(图3c)处于30%~40%,低温和高温处理无显著性差异,中温处理最少。
图3 温度对棉花生物量及生物量分配的影响

Fig. 3 Effect of temperature on cotton biomass and biomass allocation

2.3 土壤温度对棉花根长分布的影响

由土壤温度对棉花根长垂直分布的影响可以看出(图4a),与低温处理相比,高温处理呈现随土层加深根长变小的趋势,与之相反,中温处理下随土层加深根长逐渐增加。在0~5 cm土层,高温处理根长最大,达530.5 cm,分别比低温和中温处理高5.2%~126.9%、4.9%~62.3%。5 cm土层以下,中温处理根长最大,比低温和高温处理分别高81.68%~98.43%、170.17%~218.35%。从棉花根系空间分布图可以看出(图4b),高温处理棉花根系在浅层土壤分布较多,中、低温处理根系均呈现出土层越深,根系越多,根长越长的特征。其中0~5 cm土层根系分布表现为:高温>低温>中温。
图4 土壤温度对棉花根长分布的影响

Fig. 4 Effect of soil temperature on the distribution of root length in cotton

2.4 土壤温度对土壤有效磷分布的影响

从有效磷在土壤剖面中的分布可知(图5a),总体呈现土层越深,土壤有效磷含量越低的现象。总体上土壤有效磷含量高的位置分布在表层滴头附近(图5b)。各处理的土壤有效磷含量表现为土壤温度越高有效磷含量越少的趋势。在0~5 cm土层土壤有效磷含量也有相同特征,其中,中、高温处理相比于低温处理分别低11%、17.9%。
图5 土壤温度对土壤有效磷分布的影响

Fig. 5 Effect of temperature on effective P distribution in soil

2.5 不同温度下土壤有效磷含量与棉花根长的相关性

根据不同温度下土壤有效磷含量与棉花根长的相关性分析可知(图6),三个温度处理下,土壤有效磷含量和棉花根长均呈现显著的负相关关系。土壤有效磷含量提高不利于棉花根长的增加。其中,低温和中温处理土壤有效磷和棉花根长的负相关性较强,高温处理土壤有效磷含量和棉花根长负相关性较弱。
图6 不同温度下土壤有效磷含量与棉花根长的相关性分析

Fig. 6 Correlation analysis of soil effective phosphorus content and cotton root length at different temperatures

2.6 土壤温度对棉花磷利用效率的影响

由不同土壤温度对棉花磷素吸收及磷肥利用率的影响结果分析(表1),中温处理下两者均最高,低温次之,高温最小。其中磷素吸收量比低温和高温处理分别高49.69%和89.36%,各器官也表现出类似规律。磷素利用率有显著性差异,其中,中温处理最大,中温分别较高温和低温处理高100%和50%。
表1 不同温度对棉花磷素吸收量及磷肥利用率的影响

Tab. 1 Effects of different treatments on phosphate absorption and phosphate fertilizer utilization in cotton

根/g 茎/g 叶/g 合计/g 磷素利用率
/(kg·kg-1
低温 2.27±0.52ab 1.73±0.71b 2.54±0.61b 6.54±0.89b 0.08±0.01b
中温 3.08±0.84a 3.30±0.35a 3.42±0.48a 9.79±1.17a 0.12±0.01a
高温 1.98±0.54b 1.34±0.34b 1.85±0.64b 5.17±1.01c 0.06±0.01c

注:不同小写字母表示处理间差异显著(P<0.05)。

3 讨论

3.1 土壤温度对棉花生长的影响

植物生长发育所需的水分、养分、空气和热量都通过土壤获取。棉花的株高、茎粗、叶片数和生物量是反映棉花生长和发育的重要指标[15]。生物量分配是植物对资源分配方式的反应,是通过光合和呼吸作用在不同器官间分配的结果[16]。其在植物体内各器官的分配不仅受外界环境变化的调控,还与植物自身生长特性相关[17-18]。王振华等[19]的研究发现,随着土壤温度的提升,棉花的株高、茎粗、叶片数以及生物量都有不同程度的增长。土壤温度较低会导致植物的茎秆细小、植株低矮、叶片数和生物量减少,植物产量降低[20]。一定范围内的土壤温度上升可以促进棉花的生长发育。但如果温度太高,或者长时间处于较高温度下,棉花种子的存活率、发芽率,苗期的株高、茎粗、叶片数量、根长、花铃期的开花情况、结铃率,皮棉产量、籽棉产量、棉纤维品质等均会受到影响,容易导致棉花减产甚至棉株死亡[21]。高温会使多数作物光合等生理活动紊乱,甚至导致植株死亡,直接影响其产量[22]。本研究发现棉花的所有生长性状均表现为随土壤温度的增加呈现先增大后减小的趋势。其中,中温处理的棉花生长性状最好,这与相关学者的研究结论相似[23]

3.2 土壤温度对棉花根长分布的影响

温度是影响根系生长的重要因素,根系需要一个适宜的温度范围才能保持正常的生长速率和功能,而且其最适温度往往低于地上部。根系作为植物与土壤“交流”的介质[24],其在土壤中的数量和分布直接决定作物的生产能力。棉花所处的光温环境有所不同,根系直径、根系表面积以及根系生物量和根长密度在土壤中的分布也会发生改变[25]。土壤温度如果过高,植物将减少碳水化合物从地上部向根系的转移,从而限制根系的发育,降低根冠比[26]。同时改变根系的构型[27-28]。而根系构型决定了其能够接触的土壤体积的大小,是控制植物养分吸收效率的主要因素[29]。对小麦[30]、玉米[31]、高粱[32]、甘薯[33]等作物的研究表明,在高温胁迫下,作物的初生根变短、侧根生长和数量减少、根系的生长角降低、直径较大的二级和三级根数量增加。对此的解释是高温降低了根系细胞的分裂速率[34-35]。土壤温度的变化对根系的生长发育有显著影响[36],土壤表层高温会限制作物根系的定植和存活。本研究发现,在0~5 cm土层,高温处理下棉花根长最大达到了530.5 cm,分别比低温和中温处理高5.2%~126.9%、4.9%~62.3%。5 cm土层以下,中温处理根长最长,比低温和高温处理分别增加了81.68%~98.43%、170.17%~218.35%。高温根系在0~5 cm土壤表层分布更多,可能是随着土壤温度的升高,植物将减少碳水化合物从地上部向根系的转移,从而限制根系的发育,根冠比降低[26],地下部干重减少的缘故。从本研究结果看,一方面棉花根系生长相对于其他作物面对土壤高温表现出更强的耐受性;另一方面,适当提高低温有利于棉花根系向土壤表层定殖,这对于滴施磷肥利用率的提高有利。同时也表明本研究设置的土壤温度梯度还有提高的余地,相关研究还需要进一步开展。

3.3 土壤温度对土壤有效磷分布和棉花磷肥利用率的影响

土壤有效磷含量是衡量土壤供磷能力的重要指标[37]。由于磷肥移动性差,磷肥通过滴灌带在地表滴施导致磷肥在表层土壤高度累积[38]。根系是与土壤直接接触的植物器官,植物吸收磷肥多少和根系的空间分布密切相关。White等[39]发现表层土壤中具有更大的根表面积(侧根、根毛)是植物高效吸收磷的理想根系特征;廖红等[40]李俊义等[41]通过一系列试验证明了相对较浅的根系有利于磷的高效获取。本研究发现不同温度处理0~5 cm土层的根长随温度的增加而增加,0~5 cm土层土壤有效磷含量随温度的增加而减少,表现出明显的耗竭状态,因此根系与磷素的空间匹配性增加有助于磷素的吸收,与上述学者的研究结论相对应。
简红忠等[42]研究表明磷素吸收量和磷肥利用率均可以作为磷肥增产增效的判定指标。适宜的土壤温度能促进作物呼吸作用加强,增强作物对磷素的吸收能力;同时也能提高作物体内的各种酶促反应,增加玉米的呼吸作用,进而提高根系对磷肥的吸收能力[43]。本研究发现中温处理棉花磷素吸收量和磷利用率均最高,与段刚强等[43]的研究结论一致。
在本研究中,因试盆大小限制,棉花植株生长、根系大小及空间分布和田间条件下有一定的差异,但是棉花生长情况基本可以反映出其对土壤温度变化的响应。总体而言,将地温控制在22~26 ℃对于棉花磷素吸收和磷素利用率的提高最为有利,在实际的生产实践中,既可以通过双层覆膜、增施有机肥、设置风障等方式提高土壤温度[44];也可以通过灌溉水温、覆草等措施降低土壤温度[15],进而调控棉花根系在特定区域的增殖以提高滴施磷肥利用率。因此本研究结果对于通过地温调控实现滴施磷肥的高效利用有一定的参考价值。未来一方面需要在田间条件下进一步开展全生育期验证试验研究,另一方面,需要根据新疆棉田生产的特殊模式提出具有可操作性的土壤温度控制技术。

4 结论

随土壤温度的提高,棉花株高、茎粗、叶片数和生物量均呈现先增高后降低的趋势,中温处理(22~26 ℃)对于棉花生长发育最为有利,且在此条件下棉花磷素吸收量和磷素利用率也最高(分别为9.79 g、0.12 kg·kg-1)。其内在原因在于适宜土壤温度有利于0~5 cm土层棉花根系的增殖,相应土层有效磷表现出耗竭对此给予了反证。总之,土壤温度保持在22~26 ℃,有助于棉花生长和滴施磷肥利用率的提高。
[1]
新疆棉花总产量连续29年居全国首位[N]. 新疆日报, 2023-12-26.

[Xinjiang’s Total Cotton Output has Ranked First in China for 29 Consecutive Years[N]. Xinjiang Daily, 2023-12-26.]

[2]
王进, 白洁, 罗格平, 等. 近34年玛纳斯河流域棉花生长和耗水特征研究[J]. 农业机械学报, 2015, 46(8): 88-94.

[Wang Jin, Bai Jie, Luo Geping, et al. Growth and water consumption characteristics of cotton in manas basin during recent 34 years[J]. Journal of Agricultural Machinery, 2015, 46(8): 88-94.]

[3]
王肖娟, 危常州, 张君, 等. 灌溉方式和施氮量对棉田氮肥利用率及损失的影响[J]. 应用生态学报, 2012, 23(10): 2751-2758.

[Wang Xiaojuan, Wei Changzhou, Zhang Jun, et al. Effects of irrigation mode and N application rate on cotton field fertilizer N use efficiency and N losses[J]. Journal of Applied Ecology, 2012, 23(10): 2751-2758.

[4]
Simpson J R, Pinkerton A. Fluctuations in soil moisture, and plant uptake of surface applied phosphate[J]. Fertilizer Research, 1989, 20(2): 101-108.

[5]
Simpson R, Oberson A, Culvenor R, et al. Strategies and agronomic interventions to improve the phosphorus-use efficiency of farming systems[J]. Plant and Soil, 2011, 349(1-2): 89-120.

[6]
李青军, 张炎, 哈丽哈什·依巴提, 等. 漫灌和滴灌棉花土壤有效磷丰缺指标与临界值研究[J]. 植物营养与肥料学报, 2018, 24(4): 927-934.

[Li Qingjun, Zhang Yan, Halihash Ibati, et al. Abundance index and critical level of phosphorus in cotton soils under flooding and drip irrigation[J]. Journal of Plant Nutrition and Fertilizer, 2018, 24(4): 927-934.]

[7]
尹飞虎, 康金花, 黄子蔚, 等. 棉花滴灌随水施滴灌专用肥中磷素的移动和利用率的32P研究[J]. 西北农业学报, 2005, 14(6): 199-206.

[Yin Feihu, Kang Jinhua, Huang Ziwei, et al. Distribution and use efficiency of phosphorus from trickle irrigation fertilizer specific fertigated of trickle irrigated cotton via 32P tracing technique[J]. Acta Agriculture Boreali-Occidentalis Sinica, 2005, 14(6): 199-206.]

[8]
张国桥, 王静, 刘涛, 等. 水肥一体化施磷对滴灌玉米产量、磷素营养及磷肥利用效率的影响[J]. 植物营养与肥料学报, 2014, 20(5): 1103-1109.

[Zhang Guoqiao, Wang Jing, Liu Tao, et al. Effect of water and P fertilizer coupling on corn yield, P uptake, and P utilization efficiency with drip irrigation in a calcareous soil[J]. Journal of Plant Nutrition and Fertilizers, 2014, 20(5): 1103-1109.]

[9]
杨国江, 彭懿, 尹飞虎, 等. 滴灌磷肥在灰漠土中运移的研究[J]. 中国土壤与肥料, 2020(6): 138-146.

[Yang Guojiang, Peng Yi, Yin Feihu, et al. Phosphorus migration of monoammonium phosphate via drip-irrigation in gray desert soil[J]. Soil and Fertilizer Sciences in China, 2020(6): 138-146.]

[10]
白灯莎·买买提艾力, 孙良斌, 张少民, 等. 双膜覆盖对盐碱地棉花出苗及产量的影响[J]. 中国棉花, 2013, 40(1): 26-29.

[Baidengsha Maimaitiaili, Sun Liangbin, Zhang Shaomin, et al. Effects of double plastic mulching on the cotton germination and yield in saline-alkali soil[J]. China Cotton, 2013, 40(1): 26-29.]

[11]
胡明芳, 田长彦. 新疆棉田地膜覆盖耕层土壤温度效应研究[J]. 中国生态农业学报, 2003, 11(3): 128-130.

[Hu Mingfang, Tian Changyan. The temperature effects of membrane coverage on cultivated soil of cotton field in Xinjiang[J]. Chinese Journal of Eco-Agriculture, 2003, 11(3): 128-130.]

[12]
Gavito M E, Curtis P S, Mikkelsen T N, et al. Interactive effects of soil temperature, atmospheric carbon dioxide and soil N on root development, biomass and nutrient uptake of winter wheat during vegetative growth[J]. Journal of Experimental Botany, 2001, 52(362): 1913-1923.

[13]
Mai W X, Xue X R, Feng G, et al. Can optimization of phosphorus input lead to high productivity and high phosphorus use efficiency of cotton through maximization of root/mycorrhizal efficiency in phosphorus acquisition?[J]. Field Crops Research, 2018a, 216: 100-108.

[14]
Mai W X, Xue X R, Feng G, et al. Simultaneously maximizing root/mycorrhizal growth and phosphorus uptake by cotton plants by optimizing water and phosphorus management[J]. BMC Plant Biology, 2018b, 18: 334.

[15]
何静, 王振华, 刘健, 等. 灌溉水温与施氮量对滴灌棉田土壤水热及棉花生长和产量的影响[J]. 中国农业科学, 2024, 57(2): 319-335.

[He Jing, Wang Zhenhua, Liu Jian, et al. Effects of irrigation water temperature and nitrogen application rate on soil hydrothermal environment and cotton growth and yield under mulched drip irrigation[J]. Scientia Agricultura Sinica, 2024, 57(2): 319-335.]

[16]
黄明泉. 典型地段思茅松天然林生物量分配的比较分析及环境解释[D]. 昆明: 西南林业大学, 2018.

[Huang Mingquan. Comparative Analysis and Environmental Interpretation of the Biomass Distribution of Simao pine Natural Forest in Typical Section[D]. Kunming: Southwest Forestry University, 2018.]

[17]
Mokany K, Raison R J, Prokushkin A S. Critical analysis of root: Shoot ratios in terrestrial biomes[J]. Global Change Biology, 2005, 12(1): 84-96.

[18]
Schmid I. The influence of soil type and interspecific competition on the fine root system of Norway spruce and European beech[J]. Basic and Applied Ecology, 2002, 3(4): 339-346.

[19]
王振华, 武小荻, 王天宇, 等. 灌溉时段及水温对膜下滴灌棉花生长及产量的影响[J]. 排灌机械工程学报, 2022, 40(10): 1040-1047.

[Wang Zhenhua, Wu Xiaodi, Wang Tianyu, et al. Effects of irrigation timing and water temperature on cotton growth and yield under mulched drip irrigation[J]. Journal of Drainage and Irrigation Machinery Engineering, 2022, 40(10): 1040-1047.]

[20]
史普想, 刘盈茹, 张晓军, 等. 低温水灌溉对花生根际土壤酶活性和养分含量的影响[J]. 中国油料作物学报, 2016, 38(6): 811-816.

[Shi Puxiang, Liu Yingru, Zhang Xiaojun, et al. Effects of irrigation with low temperature water on soil enzyme activity and soil nutrient of peanut rhizosphere[J]. Chinese Journal of Oil Crop Sciences, 2016, 38(6): 811-816.]

[21]
杨威, 朱建强, 吴启侠, 等. 涝害和高温下棉花苗期的生长生理代谢特征[J]. 农业工程学报, 2015, 31(22): 98-104.

[Yang Wei, Zhu Jianqiang, Wu Qixia, et al. Growth and physiological metabolism characteristic of cotton seedlings under combination of waterlogging and heat stress[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(22): 98-104.]

[22]
马晓昕, 李成林, 张超, 等. 高温胁迫影响棉花生长及产量品质的生理与分子机理[J]. 中国棉花, 2021, 48(12): 1-6, 12.

[Ma Xiaoxin, Li Chenglin, Zhang Chao, et al. Physiological and molecular mechanisms of high temperature stress on cotton growth, yield and quality[J]. China Cotton, 2021, 48(12): 1-6, 12.]

[23]
丁宇. 干播湿出水分调控对土壤根域环境及棉株生长特征影响研究[D]. 乌鲁木齐: 新疆农业大学, 2023.

[Ding Yu. Effects of Dry Sowing and Wet Extraction on Soil Root Domain Environment and Cotton Plant Growth Characteristics[D]. Urumqi: Xinjiang Agricultural University, 2023.]

[24]
Sun S M, Han B, Chen L, et al. Root system architecture analysis and genome-wide association study of root system architecture related traits in cotton[J]. Acta Agronomica Sinica, 2022, 48(5): 1081-1090.

[25]
Fan J L, Mcconkey B, Wang H, et al. Root distribution by depth for temperate agricultural crops[J]. Field Crops Research, 2016, 189: 68-74.

[26]
Koevoets I T, Venema J H, Elzenga J T, et al. Roots withstanding their environment: Exploiting root system architecture responses to abiotic stress to improve crop tolerance[J]. Frontiers in Plant Science, 2016, 7: 1335.

[27]
Ribeiro Lígia N M, Alcantara A C S, Darder M, et al. Bionanocomposites containing magnetic graphite as potential systems for drug delivery[J]. International Journal of Pharmaceutics, 2014, 477(1-2): 553-563.

[28]
Huang D, Swanson E A, Lin C P, et al. Optical coherence tomography[J]. Science, 1991, 254(5035): 78-81.

[29]
Andreas Hund, Nathinee Ruta, Markus Liedgens. Rooting depth and water use efficiency of tropical maize inbred lines, differing in drought tolerance[J]. Plant and Soil, 2008, 318(2): 311-325.

[30]
Pardales J R Jr, Kono Y, Yamauchi A, et al. Seminal root growth in sorghum (Sorghum bicolor) under allelopathic influences from m residue of taro (Colocasia esculenta)[J]. Annals of Botany, 1992, 69: 493-496.

[31]
Pardales J R Jr, Yamauchi A, Kono Y. Growth and development of sorghum roots after exposure to different periods of a hot root-zone temperature[J]. Environmental and Experimental Botany, 1991, 31: 397-403.

[32]
Joshi S, Hussain M T, Roces C B, et al. Microfluidics based manufacture of liposomes simultaneously entrapping hydrophilic and lipophilic drugs[J]. International Journal of Pharmaceutics, 2016, 514(1): 160-168.

[33]
Sattelmacher B, Klotz F, Marschner H. Influence of the nitrogen level on root growth and morphology of two potato varieties differing in nitrogen acquisition[J]. Plant and Soil, 1990, 132: 131-137.

[34]
Borges R G, Chaney W R. Root temperature affects mycorrhizal efficacy in Fraxinus pennsylvanica Marsh[J]. New Phytologist, 1989, 112(3): 411-417.

[35]
Gavito M E, Olsson P A, Rouhier H, et al. Temperature constraints on the growth and functioning of root organ cultures with arbuscular mycorrhizal fungi[J]. New Phytologist, 2005, 168: 179-188.

[36]
文卿琳, 王兴鹏. 温度对棉花种子萌发的影响[J]. 安徽农业科学, 2008(9): 3513-3515.

[Wen Qinglin, Wang Xingpeng. Effects of temperature on the germination of cotton seeds[J]. Journal of Anhui Agricultural Sciences, 2008(9): 3513-3515.]

[37]
赵红华. 滴灌条件下土壤酸化对石灰性土壤磷锌有效性影响及其生物效应[D]. 石河子: 石河子大学, 2015.

[Zhao Honghua. Effects of Soil Acidification under Drip Irrigation on Soil P and Zn availability at Calcareous Soil and its Biological Effects[D]. Shihezi: Shihezi University, 2015.]

[38]
陈波浪, 盛建东, 蒋平安, 等. 不同质地棉田土壤对磷吸附与解吸研究[J]. 土壤通报, 2010, 41(2): 303-307.

[Chen Bolang, Sheng Jiandong, Jiang Ping’an, et al. Study on characteristics of phosphorus adsorption and desorption of cotton field with different soil textures[J]. Soil Bulletin, 2010, 41(2): 303-307.]

[39]
White P J, George T S, Gregory P J, et al. Matching roots to their environment[J]. Annals of Botany, 2013, 112(2): 207-222.

[40]
廖红, 严小龙. 菜豆根构型对低磷胁迫的适应性变化及基因型差异[J]. 植物学报, 2000, 42(2): 158-163.

[Liao Hong, Yan Xiaolong. Adaptive changes and genotypic variation for root architecture of common bean in response to phosphorus deficiency[J]. Journal of Integrative Plant Biology, 2000, 42(2): 158-163.]

[41]
李俊义, 刘荣荣, 王润珍. 新疆棉区棉花氮肥适宜用量和施用时期研究[J]. 中国棉花, 1999, 26(4): 24-26.

[Li Junyi, Liu Rongrong, Wang Runzhen. Study on the appropriate dosage and application period of cotton nitrogen fertilizer in Xinjiang cotton area[J]. China cotton, 1999, 26(4): 24-26.]

[42]
简红忠, 杨小敏, 王琳, 等. 磷肥施用对汉中盆地水稻生长、肥料利用率及土壤磷素平衡的影响[J]. 陕西农业科学, 2019, 65(10): 62-65.

[Jian Hongzhong, Yang Xiaomin, Wang Lin, et al. Effect of P fertilizer application on rice Growth, fertilizer utilization rate and soil phosphorus balance in Hanzhong Basin[J]. Shaanxi Journal of Agricultural Sciences, 2019, 65(10): 62-65.]

[43]
段刚强, 杨恒山, 张玉芹, 等. 提高玉米磷肥利用率的研究进展[J]. 中国农学通报, 2015, 31(21): 24-29.

[Duan Gangqiang, Yang Hengshan, Zhang Yuqin, et al. Research progress on improving phosphate fertilizer utilization in corn[J]. Chinese Agricultural Science Bulletin, 2015, 31(21): 24-29.]

[44]
夏镇卿, 路海东. 土壤温度对作物根区环境及玉米根冠生长的调控研究进展[J]. 玉米科学, 2020, 28(3): 99-104.

[Xia Zhenqing, Lu Haidong. Research progress in regulation of soil temperature on crop root zone environment and maize root cap growth[J]. Journal of Maize Sciences, 2020, 28(3): 99-104.]

Outlines

/